Thursday, June 16, 2022

How Many Tracks Do Train Stations Need?

A brief discussion on Reddit about my post criticizing Penn Station expansion plans led me to write a very long comment, which I’d like to hoist to a full post explaining how big an urban train station needs to be to serve regional and intercity rail traffic. The main principles are,

  • Good operations can substitute for station size, and it’s always cheaper to get the system to be more reliable than to build more tracks in city center.
  • Through-running reduces the required station footprint, and this is one of the reasons it is popular for urban commuter rail systems.
  • The simpler and more local the system is, the fewer tracks are needed: an urban commuter rail system running on captive tracks with no sharing tracks with other traffic and with limited branching an get away with smaller stations than an intercity rail station featuring trains from hundreds of kilometers away in any direction.

The formula for minimum headways

On subways, where usually the rush hour crunches are the worst, trains in large cities run extremely frequently, brushing up against the physical limitation of the tracks. The limit is dictated by the brick wall rule, which states that the signal system must at any point assume that the train ahead can turn into a brick wall and stop moving and the current train must be able to brake in time before it reaches it. Cars, for that matter, follow the same rule, but their emergency braking rate is much faster, so on a freeway they can follow two seconds apart. A metro train in theory could do the same with headways of 15 seconds, but in practice there are stations on the tracks and dealing with them requires a different formula.

With metro-style stations, without extra tracks, the governing formula is,

\mbox{headway } = \mbox{stopping time } + \mbox{dwell time } + \mbox{platform clearing time }

Platform clearing time is how long it takes the train to clear its own length; the idea of the formula is that per the brick wall rule, the train we’re on needs to begin braking to enter the next station only after the train ahead of ours has cleared the station.

But all of this is in theory. In practice, there are uncertainties. The uncertainties are almost never in the stopping or platform clearing time, and even the dwell time is controllable. Rather, the schedule itself is uncertain: our train can be a minute late, which for our purpose as passengers may be unimportant, but for the scheduler and dispatcher on a congested line means that all the trains behind ours have to also be delayed by a minute.

What this means that more space is required between train slots to make schedules recoverable. Moreover, the more complex the line’s operations are, the more space is needed. On a metro train running on captive tracks, if all trains are delayed by a minute, it’s really not a big deal even to the control tower; all the trains substitute for one another, so the recovery can be done at the terminal. On a mainline train running on a national network in which our segment can host trains to Budapest, Vienna, Prague, Leipzig, Munich, Zurich, Stuttgart, Frankfurt, and Paris, trains cannot substitute for one another – and, moreover, a train can be easily delayed 15 minutes and need a later slot. Empty-looking space in the track timetable is unavoidable – if the schedule can’t survive contact with the passengers, it’s not a schedule but crayon.

How to improve operations

In one word: reliability.

In two words: more reliability.

Because the main limit to rail frequency on congested track comes from the variation in the schedule, the best way to increase capacity is to reduce the variation in the schedule. This, in turn, has two aspects: reducing the likelihood of a delay, and reducing the ability of a delay to propagate.

Reducing delays

The central insight about delays is that they may occur anywhere on the line, roughly in proportion to either trip time or ridership. This means that on a branched mainline railway network, delays almost never originate at the city center train station or its approaches, not because that part of the system is uniquely reliable, but because the train might spend five minutes there out of a one-hour trip. The upshot is that to make a congested central segment more reliable, it is necessary to invest in reliability on the entire network, most of which consists of branch segments that by themselves do not have capacity crunches.

The biggest required investments for this are electrification and level boarding. Both have many benefits other than schedule reliability, and are underrated in Europe and even more underrated in the United States.

Electrification is the subject of a TransitMatters report from last year. As far as reliability is concerned, the LIRR and Metro-North’s diesel locomotives average about 20 times the mechanical failure rate of electric multiple units (source, PDF-pp. 36 and 151). It is bad enough that Germany is keeping some outer regional rail branches in the exurbs of Berlin and Munich unwired; that New York has not fully electrified is unconscionable.

Level boarding is comparable in its importance. It not only reduces dwell time, but also reduces variability in dwell time. With about a meter of vertical gap between platform and train floor, Mansfield has four-minute rush hour dwell times; this is the busiest suburban Boston commuter rail station at rush hour, but it’s still just about 2,000 weekday boardings, whereas RER and S-Bahn stations with 10 time the traffic hold to a 30-second standard. This also interacts positively with accessibility: it permits passengers in wheelchairs to board unaided, which both improves accessibility and ensures that a wheelchair user doesn’t delay the entire train by a minute. It is fortunate that the LIRR and (with one peripheral exception) Metro-North are entirely high-platform, and unfortunate that New Jersey Transit is not.

Reducing delay propagation

Even with reliable mechanical and civil engineering, delays are inevitable. The real innovations in Switzerland giving it Europe’s most reliable and highest-use railway network are not about preventing delays from happening (it is fully electrified but a laggard on level boarding). They’re about ensuring delays do not propagate across the network. This is especially notable as the network relies on timed connections and overtakes, both of which require schedule discipline. Achieving such discipline requires the following operations and capital treatments:

  • Uniform timetable padding of about 7%, applied throughout the line roughly on a one minute in 15 basis.
  • Clear, non-discriminatory rules about train priority, including a rule that a train that’s more than 30 minutes loses all priority and may not delay other trains at junctions or on shared tracks.
  • A rigid clockface schedule or Takt, where the problem sections (overtakes, meets, etc.) are predictable and can receive investment. With the Takt system, even urban commuter lines can be left partly single-track, as long as the timetable is such that trains in opposite directions meet away from the bottleneck.
  • Data-oriented planning that focuses on tracing the sources of major delays and feeding the information to capital planning so that problem sections can, again, receive capital investment.
  • Especial concern for railway junctions, which are to be grade-separated or consistently scheduled around. In sensitive cases where traffic is heavy and grade separation is too expensive, Switzerland builds pocket tracks at-grade, so that a late train can wait for a slot without delaying cross-traffic.

So, how big do train stations need to be?

A multi-station urban commuter rail trunk can get away with metro-style operations, with a single station track per approach track. However, the limiting factor to capacity will be station dwell times. In cases with an unusually busy city center station, or on a highly-interlinked regional or intercity network, this may force compromises on capacity.

In contrast, with good operations, a train station with through-running should never need more than two station tracks per approach track. Moreover, the two station tracks that each approach track splits into should serve the same platform, so that if there is an unplanned rescheduling of the train, passengers should be able to use the usual platform at least. Berlin Hauptbahnhof’s deep tracks are organized this way, and so is the under-construction Stuttgart 21.

Why two? First, because it is the maximum number that can serve the same platform; if they serve different platforms, it may require lengthening dwell times during unscheduled diversions to deal with passenger confusion. And second, because every additional platform track permits, in theory, an increase in the dwell time equal to the minimum headway. The minimum headway in practice is going to be about 120 seconds; at rush hour Paris pushes 32 trains per hour on the shared RER B and D trunk, which is not quite mainline but is extensively branched, but the reliability is legendarily poor. With a two-minute headway, the two-platform track system permits a straightforward 2.5-minute dwell time, which is more than any regional railway needs; the Zurich S-Bahn has 60-second dwells at Hauptbahnhof, and the Paris RER’s single-level trains keep to about 60 seconds at rush hour in city center as well.

All of this is more complicated at a terminal. In theory the required number of tracks is the minimum turn time divided by the headway, but in practice the turn time has a variance. Tokyo has been able to push station footprint to a minimum, with two tracks at Tokyo Station on the Chuo Line (with 28 peak trains per hour) and, before the through-line opened, four tracks on the Tokaido Main Line (with 24). But elsewhere the results are less optimistic; Paris is limited to 16-18 trains per hour at the four-track RER E terminal at Saint-Lazare.

At Paris’s levels of efficiency, which are well below global best practices, an unexpanded Penn Station without through-running would still need two permanent tracks for Amtrak, leaving 19 tracks for commuter traffic. With the Gateway tunnel built, there would be four two-track approaches, two from each direction. The approaches that share tracks with Amtrak (North River Tunnels, southern pair of East River Tunnels) would get four tracks each, enough to terminate around 18 trains per hour at rush hour, and the approaches that don’t would get five, enough for maybe 20 or 22. The worst bottleneck in the system, the New Jersey approach, would be improved from today’s 21 trains per hour to 38-40.

A Penn Station with through-running does not have the 38-40 trains per hour limit. Rather, the approach tracks would become the primary bottleneck, and it would take an expansion to eight approach tracks on each side for the station itself to be at all a limit.



from Hacker News https://ift.tt/fsEJlBh

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.