Join GitHub today
GitHub is home to over 50 million developers working together to host and review code, manage projects, and build software together.
Sign upFiles
PermalinkFailed to load latest commit information.
Type
Name
Latest commit message
Commit time
待办
MobileNetv2-YOLOv3-SPP Darknet
A darknet implementation of MobileNetv2-YOLOv3-SPP detection network
*emmmm...这个懒得训练,mAP就凑合这样吧
Darknet Group convolution is not well supported on some GPUs such as NVIDIA PASCAL!!! The MobileNetV2-YOLOv3-SPP inference time is 100ms at GTX1080ti, but RTX2080 inference time is 5ms!!!
MobileNetV2-YOLOv3-Lite&Nano Darknet
Mobile inference frameworks benchmark (4*ARM_CPU)
Network | VOC mAP(0.5) | COCO mAP(0.5) | Resolution | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|---|---|
MobileNetV2-YOLOv3-Lite | 72.61 | 36.57 | 320 | 31.58 ms | 18 ms | 1.8BFlops | 8.0MB |
MobileNetV2-YOLOv3-Nano | 65.27 | 30.13 | 320 | 13 ms | 5 ms | 0.5BFlops | 3.0MB |
YOLOv3-Tiny-Prn | & | 33.1 | 416 | 36.6 ms | & ms | 3.5BFlops | 18.8MB |
YOLO-Nano | 69.1 | & | 416 | & ms | & ms | 4.57BFlops | 4.0MB |
- Support mobile inference frameworks such as NCNN&MNN
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
- Darknet Train Configuration: CUDA-version: 10010 (10020), cuDNN: 7.6.4,OpenCV version: 4 GPU:RTX2080ti
MobileNetV2-YOLOv3-Lite-COCO Test results
MobileNetV2-YOLO-Fastest
Network | Resolution | VOC mAP(0.5) | Inference time (DarkNet/i7-6700) | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|---|---|
MobileNetV2-YOLOv3-Fastest | 320 | 46.55 | 26 ms | 8.2 ms | 2.4 ms | 0.13BFlops | 700KB |
- 都2.4ms了,要啥mAP😎
- Suitable for hardware with extremely tight computing resources
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
- This model is recommended to do some simple single object detection suitable for simple application scenarios
MobileNetV2-YOLO-Fastest Test results
500kb的yolo-Face-Detection
Network | Resolution | Inference time (NCNN/Kirin 990) | Inference time (MNN arm82/Kirin 990) | FLOPS | Weight size |
---|---|---|---|---|---|
UltraFace-version-RFB | 320x240 | &ms | 3.36ms | 0.1BFlops | 1.3MB |
UltraFace-version-Slim | 320x240 | &ms | 3.06ms | 0.1BFlops | 1.2MB |
yoloface-500k | 320x256 | 5.5ms | 2.4ms | 0.1BFlops | 0.5MB |
- 都500k了,要啥mAP😎
- Inference time (DarkNet/i7-6700):13ms
- The mnn benchmark only includes the forward inference time
- The ncnn benchmark is the forward inference time + post-processing time(NMS...) of the convolution feature map.
Wider Face Val
Model | Easy Set | Medium Set | Hard Set |
---|---|---|---|
libfacedetection v1(caffe) | 0.65 | 0.5 | 0.233 |
libfacedetection v2(caffe) | 0.714 | 0.585 | 0.306 |
Retinaface-Mobilenet-0.25 (Mxnet) | 0.745 | 0.553 | 0.232 |
version-slim-320 | 0.77 | 0.671 | 0.395 |
version-RFB-320 | 0.787 | 0.698 | 0.438 |
yoloface-500k-320 | 0.728 | 0.682 | 0.431 |
YoloFace-500k Test results
Reference&Framework instructions&How to Train
- https://github.com/AlexeyAB/darknet
- You must use a pre-trained model to train your own data set. You can make a pre-trained model based on the weights of COCO training in this project to initialize the network parameters
- 交流qq群:1062122604
About model selection
- MobileNetV2-YOLOv3-SPP: Nvidia Jeston, Intel Movidius, TensorRT,NPU,OPENVINO...High-performance embedded side
- MobileNetV2-YOLOv3-Lite: High Performance ARM-CPU,Qualcomm Adreno GPU, ARM82...High-performance mobile
- MobileNetV2-YOLOv3-NANO: ARM-CPU...Computing resources are limited
- MobileNetV2-YOLOv3-Fastest: ....... Can you do personal face detection???It’s better than nothing
DarkNet2Caffe tutorial
Environmental requirements
MNN conversion tutorial
- Benchmark:https://www.yuque.com/mnn/cn/tool_benchmark
- Convert darknet model to caffemodel through darknet2caffe
- Manually replace the upsample layer in prototxt with the interp layer
- Take the modification of MobileNetV2-YOLOv3-Nano-voc.prototxt as an example
#layer {
# bottom: "layer71-route"
# top: "layer72-upsample"
# name: "layer72-upsample"
# type: "Upsample"
# upsample_param {
# scale: 2
# }
#}
layer {
bottom: "layer71-route"
top: "layer72-upsample"
name: "layer72-upsample"
type: "Interp"
interp_param {
height:20 #upsample h size
width:20 #upsample w size
}
}
NCNN conversion tutorial
NCNN Android Sample
Thanks
About
MobileNetV2-YoloV3-Nano: 0.5BFlops 3MB HUAWEI P40: 6ms/img, YoloFace-500k:0.1Bflops500KB🔥🔥🔥
Topics
Resources
License
You can’t perform that action at this time.
from Hacker News https://ift.tt/2ZPt9mq
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.