Tuesday, October 29, 2019

Multiplayer AlphaZero

Title:Multiplayer AlphaZero

(Submitted on 29 Oct 2019)

Abstract: The AlphaZero algorithm has achieved superhuman performance in two-player, deterministic, zero-sum games where perfect information of the game state is available. This success has been demonstrated in Chess, Shogi, and Go where learning occurs solely through self-play. Many real-world applications (e.g., equity trading) require the consideration of a multiplayer environment. In this work, we suggest novel modifications of the AlphaZero algorithm to support multiplayer environments, and evaluate the approach in two simple 3-player games. Our experiments show that multiplayer AlphaZero learns successfully and consistently outperforms a competing approach: Monte Carlo tree search. These results suggest that our modified AlphaZero can learn effective strategies in multiplayer game scenarios. Our work supports the use of AlphaZero in multiplayer games and suggests future research for more complex environments.

Submission history

From: Nick Petosa [

view email

]

[v1]

Tue, 29 Oct 2019 00:06:01 UTC (421 KB)



from Hacker News https://ift.tt/2pfbDtO

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.