windyquery - A non-blocking Python PostgreSQL query builder
Windyquery is a non-blocking PostgreSQL query builder with Asyncio.
Installation
$ pip install windyquery
Connection
import asyncio from windyquery import DB # create DB connection for CRUD operatons db = DB() asyncio.get_event_loop().run_until_complete(db.connect('db_name', { 'host': 'localhost', 'port': '5432', 'database': 'db_name', 'username': 'db_user_name', 'password': 'db_user_password' }, default=True)) asyncio.get_event_loop().run_until_complete(db.connect('other_db_name', { 'host': 'localhost', 'port': '5432', 'database': 'other_db_name', 'username': 'db_user_name', 'password': 'db_user_password' }, default=False)) # switch connections between different databases db.connection('other_db_name') # the default connection can also be changed directly db.default = 'other_db_name' # close DB connection asyncio.get_event_loop().run_until_complete(db.stop())
CRUD examples
A DB instance can be used to constuct a SQL. The instance is a coroutine object. It can be scheduled to run by all asyncio mechanisms.
Build a SQL and execute it
async def main(db): # SELECT id, name FROM users users = await db.table('users').select('id', 'name') print(users[0]['name']) asyncio.run(main(db))
SELECT
# SELECT name AS username, address addr FROM users await db.table('users').select('name AS username', 'address addr') # SELECT * FROM users WHERE id = 1 AND name = 'Tom' await db.table('users').select().where('id', 1).where('name', 'Tom') # SELECT * FROM users WHERE id = 1 AND name = 'Tom' await db.table('users').select().where('id', '=', 1).where('name', '=', 'Tom') # SELECT * FROM users WHERE id = 1 AND name = 'Tom' await db.table('users').select().where('id = ? AND name = ?', 1, 'Tom') # SELECT * FROM users WHERE id IN (1, 2) await db.table('cards').select().where("id", [1, 2])) # SELECT * FROM users WHERE id IN (1, 2) await db.table('cards').select().where("id", 'IN', [1, 2])) # SELECT * FROM users WHERE id IN (1, 2) await db.table('cards').select().where("id IN (?, ?)", 1, 2)) # SELECT * FROM users ORDER BY id, name DESC await db.table('users').select().order_by('id', 'name DESC') # SELECT * FROM users GROUP BY id, name await db.table('users').select().group_by('id', 'name') # SELECT * FROM users LIMIT 100 OFFSET 10 await db.table('users').select().limit(100).offset(10) # SELECT users.*, orders.total FROM users # JOIN orders ON orders.user_id = users.id await db.table('users').select('users.*', 'orders.total').\ join('orders', 'orders.user_id', '=', 'users.id') # SELECT users.*, orders.total FROM users # JOIN orders ON orders.user_id = users.id AND orders.total > 100 await db.table('users').select('users.*', 'orders.total').\ join('orders', 'orders.user_id = users.id AND orders.total > ?', 100)
INSERT
# INSERT INTO users(id, name) VALUES # (1, 'Tom'), # (2, 'Jerry'), # (3, DEFAULT) await db.table('users').insert( {'id': 1, 'name': 'Tom'}, {'id': 2, 'name': 'Jerry'}, {'id': 3, 'name': 'DEFAULT'} ) # INSERT INTO users(id, name) VALUES # (1, 'Tom'), # (2, 'Jerry'), # (3, DEFAULT) # RETRUNING id, name await db.table('users').insert( {'id': 1, 'name': 'Tom'}, {'id': 2, 'name': 'Jerry'}, {'id': 3, 'name': 'DEFAULT'} ).returning('id', 'name') # INSERT INTO users(id, name) VALUES # (1, 'Tom'), # (2, 'Jerry'), # (3, DEFAULT) # RETRUNING * await db.table('users').insert( {'id': 1, 'name': 'Tom'}, {'id': 2, 'name': 'Jerry'}, {'id': 3, 'name': 'DEFAULT'} ).returning() # INSERT INTO users (id, name) VALUES # (1, 'Tom') # ON CONFLICT (id) DO NOTHING await db.table('users').insert( {'id': 1, 'name': 'Tom'}, ).on_conflict('(id)', 'DO NOTHING') # INSERT INTO users As u (id, name) VALUES # (1, 'Tom') # ON CONFLICT ON CONSTRAINT users_pkey # DO UPDATE SET name = EXCLUDED.name || ' (formerly ' || u.name || ')' await db.table('users AS u').insert( {'id': 1, 'name': 'Tom'}, ).on_conflict( 'ON CONSTRAINT users_pkey', "DO UPDATE SET name = EXCLUDED.name || ' (formerly ' || u.name || ')'" )
UPDATE
# UPDATE cards SET name = 'Tom' WHERE id = 9 await db.table('cards').where('id', 9).update({'name': 'Tom'}) # UPDATE cards SET total = total + 1 WHERE id = 9 await db.table('cards').update('total = total + 1').where('id', 9) # UPDATE users SET name = orders.name # FROM orders # WHERE orders.user_id = users.id await db.table('users').update('name = orders.name').\ from_table('orders').\ where('orders.user_id = users.id') # UPDATE users SET name = products.name, purchase = products.name, is_paid = TRUE # FROM orders # JOIN products ON orders.product_id = products.id # WHERE orders.user_id = users.id await db.table('users').update('name = product.name, purchase = products.name, is_paid = ?', True).\ from_table('orders').\ join('products', 'orders.product_id', '=', 'products.id').\ where('orders.user_id = users.id')
DELETE
# DELETE FROM users WHERE id = 1 await db.table('users').where('id', 1).delete() # DELETE FROM users WHERE id = 1 RETURNING id, name await db.table('users').where('id', 1).delete().returning('id', 'name')
Migration examples
The DB instance can also be used to migrate database schema.
CREATE TABLE
# CREATE TABLE users ( # id serial PRIMARY KEY, # group_id integer references groups (id) ON DELETE CASCADE, # created_at timestamp not null DEFAULT NOW(), # email text not null unique, # is_admin boolean not null default false, # address jsonb, # payday integer not null, # CONSTRAINT unique_email UNIQUE(group_id, email) # check(payday > 0 and payday < 8) #) await db.schema('TABLE users').create( 'id serial PRIMARY KEY', 'group_id integer references groups (id) ON DELETE CASCADE', 'created_at timestamp not null DEFAULT NOW()', 'email text not null unique', 'is_admin boolean not null default false', 'address jsonb', 'payday integer not null', 'CONSTRAINT unique_email UNIQUE(group_id, email)', 'check(payday > 0 and payday < 8)', ) # CREATE TABLE accounts LIKE users await db.schema('TABLE accounts').create( 'like users' ) # CREATE TABLE IF NOT EXISTS accounts LIKE users await db.schema('TABLE IF NOT EXISTS accounts').create( 'like users' )
Modify TABLE
# ALTER TABLE users # ALTER id TYPE bigint, # ALTER name SET DEFAULT 'no_name', # ALTER COLUMN address DROP DEFAULT, # ALTER "user info" SET NOT NULL, # ALTER CONSTRAINT check(payday > 1 and payday < 6), # ADD UNIQUE(name, email) WITH (fillfactor=70), # ADD FOREIGN KEY (group_id) REFERENCES groups (id) ON DELETE SET NULL, # DROP CONSTRAINT IF EXISTS idx_email CASCADE await db.schema('TABLE users').alter( 'alter id TYPE bigint', 'alter name SET DEFAULT \'no_name\'', 'alter COLUMN address DROP DEFAULT', 'alter "user info" SET NOT NULL', 'add CONSTRAINT check(payday > 1 and payday < 6)', 'add UNIQUE(name, email) WITH (fillfactor=70)', 'add FOREIGN KEY (group_id) REFERENCES groups (id) ON DELETE SET NULL', 'drop CONSTRAINT IF EXISTS idx_email CASCADE', ) # ALTER TABLE users RENAME TO accounts await db.schema('TABLE users').alter('RENAME TO accounts') # ALTER TABLE users RENAME email TO email_address await db.schema('TABLE users').alter('RENAME email TO email_address') # ALTER TABLE users RENAME CONSTRAINT idx_name TO index_name await db.schema('TABLE users').alter('RENAME CONSTRAINT idx_name TO index_name') # ALTER TABLE users ADD COLUMN address text await db.schema('TABLE users').alter('ADD COLUMN address text') # ALTER TABLE users DROP address await db.schema('TABLE users').alter('DROP address') # CREATE INDEX idx_email ON users (name, email) await db.schema('INDEX idx_email ON users').create('name', 'email') # CREATE UNIQUE INDEX unique_name ON users(name) WHERE soft_deleted = FALSE await db.schema('UNIQUE INDEX unique_name ON users').create('name',).where('soft_deleted', False) # DROP INDEX idx_email CASCADE await db.schema('INDEX idx_email').drop('CASCADE') # DROP TABLE users await db.schema('TABLE users').drop()
Raw
The raw
method can be used to execute any form of SQL. Usually the raw
method is used to execute complex hard-coded (versus dynamically built) queries. It's also very common to use raw
method to run migrations.
The input to raw
method is not validated, so it is not safe from SQL injection.
RAW for complex SQL
await db.raw('SELECT ROUND(AVG(group_id),1) AS avg_id, COUNT(1) AS total_users FROM users WHERE id in ($1, $2, $3)', 4, 5, 6) await db.raw("SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter)") await db.raw(""" INSERT INTO user (id, name) SELECT $1, $2 WHERE NOT EXISTS (SELECT id FROM users WHERE id = $1) """, 1, 'Tom')
RAW for migration
await schema.raw(""" CREATE TABLE users( id INT NOT NULL, created_at DATE NOT NULL, first_name VARCHAR(100) NOT NULL, last_name VARCHAR(100) NOT NULL, birthday_mmddyyyy CHAR(10) NOT NULL, ) """)
JSONB examples
Methods are created to support jsonb data type for some simple use cases.
Create a table with jsonb data type
# CREATE TABLE users ( # id serial PRIMARY KEY, # data jsonb #) await db.schema('TABLE users').create( 'id serial PRIMARY KEY', 'data jsonb', )
Select jsonb field
# SELECT data->name AS name, data->>name AS name_text FROM users rows = await db.table('users').select('data', 'data->name AS name', 'data->>name AS name_text') # rows[0]['data'] == '{"name":"Tom"}' # rows[0]['name'] == '"Tom"' # rows[0]['name_text'] == 'Tom' # SELECT data->name AS name FROM users WHERE data->>name LIKE 'Tom%' await db.table('users').select('data->name AS name').where('data->>name', 'LIKE', 'Tom%') # SELECT data->name AS name FROM users WHERE data->name = '"Tom"' await db.table('users').select('data->name AS name').where("data->name", 'Tom')
Insert jsonb field
# INSERT INTO users (data) VALUES # ('{"name": "Tom"}'), # ('{"name": "Jerry"}') # RETURNING * await db.table('users').insert( {'data': {'name': 'Tom'}}, {'data': {'name': 'Jerry'}}, ).returning()
Update jsonb field
# UPDATE SET data = '{"address": {"city": "New York"}}' await db.table('users').update({'data': {'address': {'city': 'New York'}}}) # UPDATE SET data = jsonb_set(data, '{address,city}', '"Chicago"') await db.table('users').update({'data->address->city': 'Chicago'})
Listen for a notification
Postgres implements LISTEN/NOTIFY for interprocess communications. In order to listen on a channel, use the DB.listen() method. It returns an awaitable object, which resolves to a dict when a notification fires.
# method 1: manually call start() and stop() listener = db.listen('my_table') await listener.start() try: for _ in range(100): result = await listener # or result = await listener.next() print(result) # { # 'channel': 'my_table', # 'payload': 'payload fired by the notifier', # 'listener_pid': 7321, # 'notifier_pid': 7322 # } finally: await listener.stop() # method 2: use with statement async with db.listen('my_table') as listener: for _ in range(100): result = await listener print(result)
RRULE
Windyquery has a rrule function that can "expand" a rrule string into it occurrences (a list of datetimes) by using dateutil. A values CTE is prepared from the rrule occurrences, which can be further used by other querries.
A simple rrule example
rruleStr = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-04 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-06 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr}).table('my_rrules').select()
More than one rrules
rruleStr1 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ rruleStr2 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;INTERVAL=10;COUNT=3 RRULE:FREQ=DAILY;INTERVAL=5;COUNT=3 """ # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-04 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-06 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz), # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-08 10:00:00+00:00'::timestamptz), # ('2021-03-13 10:00:00+00:00'::timestamptz), # ('2021-03-23 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules ) await db.rrule('my_rrules', { 'rrule': rruleStr1 }, { 'rrule': rruleStr2 }).table('my_rrules').select() # the rrule field can also take a list of mulitple rrules. # the previous example is equivalent to await db.rrule('my_rrules', { 'rrule': [rruleStr1, rruleStr2] }).table('my_rrules').select()
Use rdate
# WITH my_rrules ("rrule") AS # (VALUES # ('2021-05-03 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rdate': '20210503T100000Z'}).table('my_rrules').select() rruleStr = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-04 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-06 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz), # ('2021-05-03 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'rdate': '20210503T100000Z'}).table('my_rrules').select() # similary to rrule, the rdate field can take a list of date strings # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-04 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-06 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz), # ('2021-05-03 10:00:00+00:00'::timestamptz), # ('2021-06-03 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'rdate': ['20210503T100000Z','20210603T100000Z']}).table('my_rrules').select()
Use exdate
rruleStr = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-06 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'exdate': '20210304T100000Z'}).table('my_rrules').select() # similary to rrule, the exdate field can take a list of date strings # WITH my_rrules ("rrule") AS # (VALUES # ('2021-03-03 10:00:00+00:00'::timestamptz), # ('2021-03-05 10:00:00+00:00'::timestamptz), # ('2021-03-07 10:00:00+00:00'::timestamptz) # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'exdate': ['20210304T100000Z','20210306T100000Z']}).table('my_rrules').select()
Join rrule with other tables
import datetime rruleStr1 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ rruleStr2 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;INTERVAL=10;COUNT=3 RRULE:FREQ=DAILY;INTERVAL=5;COUNT=3 """ # WITH task_rrules ("task_id", "rrule") AS # (VALUES # (1, '2021-03-03 10:00:00+00:00'::timestamptz), # (1, '2021-03-04 10:00:00+00:00'::timestamptz), # (1, '2021-03-05 10:00:00+00:00'::timestamptz), # (1, '2021-03-06 10:00:00+00:00'::timestamptz), # (1, '2021-03-07 10:00:00+00:00'::timestamptz), # (2, '2021-03-03 10:00:00+00:00'::timestamptz), # (2, '2021-03-08 10:00:00+00:00'::timestamptz), # (2, '2021-03-13 10:00:00+00:00'::timestamptz), # (2, '2021-03-23 10:00:00+00:00'::timestamptz) # ) # SELECT task_rrules.rrule, tasks.name # FROM task_rrules # JOIN tasks ON tasks.id = task_rrules.task_id # WHERE # rrule > '2021-03-05 10:00:00+00:00' AND # rrule < '2021-03-08 10:00:00+00:00' await db.rrule('task_rrules', { 'task_id': 1, 'rrule': rruleStr1 }, { 'task_id': 2, 'rrule': rruleStr2 }).table('task_rrules'). join('tasks', 'tasks.id', '=', 'task_rrules.task_id'). where('rrule > ? AND rrule < ?', datetime.datetime(2021, 3, 5, 10, 0, tzinfo=datetime.timezone.utc), datetime.datetime(2021, 3, 8, 10, 0, tzinfo=datetime.timezone.utc), ).select('task_rrules.rrule', 'tasks.name')
Using rrule in update
import datetime rruleStr1 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ rruleStr2 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;INTERVAL=10;COUNT=3 RRULE:FREQ=DAILY;INTERVAL=5;COUNT=3 """ # WITH task_rrules ("task_id", "rrule") AS # (VALUES # (1, '2021-03-03 10:00:00+00:00'::timestamptz), # (1, '2021-03-04 10:00:00+00:00'::timestamptz), # (1, '2021-03-05 10:00:00+00:00'::timestamptz), # (1, '2021-03-06 10:00:00+00:00'::timestamptz), # (1, '2021-03-07 10:00:00+00:00'::timestamptz), # (2, '2021-03-03 10:00:00+00:00'::timestamptz), # (2, '2021-03-08 10:00:00+00:00'::timestamptz), # (2, '2021-03-13 10:00:00+00:00'::timestamptz), # (2, '2021-03-23 10:00:00+00:00'::timestamptz) # ) # UPDATE tasks SET result = 'done' # FROM task_rrules # WHERE task_rrules.task_id = tasks.id await db.rrule('task_rrules', { 'task_id': 1, 'rrule': rruleStr1 }, { 'task_id': 2, 'rrule': rruleStr2 }).table('tasks').update("result = 'done'"). from_table('task_rrules'). where('task_rrules.task_id = tasks.id')
Using rrule with raw method
import datetime rruleStr1 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;COUNT=5 """ rruleStr2 = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY;INTERVAL=10;COUNT=3 RRULE:FREQ=DAILY;INTERVAL=5;COUNT=3 """ # WITH task_rrules ("task_id", "rrule") AS # (VALUES # (1, '2021-03-03 10:00:00+00:00'::timestamptz), # (1, '2021-03-04 10:00:00+00:00'::timestamptz), # (1, '2021-03-05 10:00:00+00:00'::timestamptz), # (1, '2021-03-06 10:00:00+00:00'::timestamptz), # (1, '2021-03-07 10:00:00+00:00'::timestamptz), # (2, '2021-03-03 10:00:00+00:00'::timestamptz), # (2, '2021-03-08 10:00:00+00:00'::timestamptz), # (2, '2021-03-13 10:00:00+00:00'::timestamptz), # (2, '2021-03-23 10:00:00+00:00'::timestamptz) # ) # DELETE FROM tasks # WHERE EXISTS( # SELECT 1 FROM task_rrules # WHERE # task_id = tasks.id AND # rrule > '2021-03-20 10:00:00+00:00' # ) # RETURNING id, task_id await db.rrule('task_rrules', { 'task_id': 1, 'rrule': rruleStr1 }, { 'task_id': 3, 'rrule': rruleStr2 }).raw(""" DELETE FROM tasks WHERE EXISTS( SELECT 1 FROM task_rrules WHERE task_id = tasks.id AND rrule > $1 ) RETURNING id, task_id """, datetime.datetime(2021, 3, 20, 10, 0, tzinfo=datetime.timezone.utc))
Using a slice to limit the occurrences
import datetime rruleStr = """ DTSTART:20210303T100000Z RRULE:FREQ=DAILY """ # WITH my_rrules ("task_id", "rrule") AS # (VALUES # (1, '2021-03-03 10:00:00+00:00'::timestamptz), # (1, '2021-03-04 10:00:00+00:00'::timestamptz), # (1, '2021-03-05 10:00:00+00:00'::timestamptz), # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'rrule_slice': slice(3)}).table('my_rrules').select() # WITH my_rrules ("task_id", "rrule") AS # (VALUES # (1, '2021-03-13 10:00:00+00:00'::timestamptz), # (1, '2021-03-15 10:00:00+00:00'::timestamptz), # (1, '2021-03-17 10:00:00+00:00'::timestamptz), # (1, '2021-03-19 10:00:00+00:00'::timestamptz), # (1, '2021-03-21 10:00:00+00:00'::timestamptz), # ) # SELECT * FROM my_rrules await db.rrule('my_rrules', {'rrule': rruleStr, 'rrule_slice': slice(10,20,2)}).table('my_rrules').select()
Tests
Windyquery includes tests. These tests are also served as examples on how to use this library.
Running tests
Install pytest to run the included tests,
pip install -U pytest
Set up a postgres server with preloaded data. This can be done by using docker with the official postgre docker image,
docker run --rm --name windyquery-test -p 5432:5432 -v ${PWD}/windyquery/tests/seed_test_data.sql:/docker-entrypoint-initdb.d/seed_test_data.sql -e POSTGRES_USER=windyquery-test -e POSTGRES_PASSWORD=windyquery-test -e POSTGRES_DB=windyquery-test -d postgres:12-alpine
Note: to use existing postgres server, it must be configured to have the correct user, password, and database needed in tests/conftest.py. Data needed by tests is in tests/seed_test_data.sql.
To run the tests,
pytest
from Hacker News https://ift.tt/3faSY8p
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.