Sunday, December 12, 2021

The Data Classes Decorator

This module provides a decorator and functions for automatically adding generated special methods such as __init__() and __repr__() to user-defined classes. It was originally described in PEP 557.

Note that this method is automatically added to the class: it is not directly specified in the InventoryItem definition shown above.

Post-init processing

The generated __init__() code will call a method named __post_init__(), if __post_init__() is defined on the class. It will normally be called as self.__post_init__(). However, if any InitVar fields are defined, they will also be passed to __post_init__() in the order they were defined in the class. If no __init__() method is generated, then __post_init__() will not automatically be called.

Among other uses, this allows for initializing field values that depend on one or more other fields. For example:

@dataclass
class C:
    a: float
    b: float
    c: float = field(init=False)

    def __post_init__(self):
        self.c = self.a + self.b

The __init__() method generated by dataclass() does not call base class __init__() methods. If the base class has an __init__() method that has to be called, it is common to call this method in a __post_init__() method:

@dataclass
class Rectangle:
    height: float
    width: float

@dataclass
class Square(Rectangle):
    side: float

    def __post_init__(self):
        super().__init__(self.side, self.side)

Note, however, that in general the dataclass-generated __init__() methods don’t need to be called, since the derived dataclass will take care of initializing all fields of any base class that is a dataclass itself.

See the section below on init-only variables for ways to pass parameters to __post_init__(). Also see the warning about how replace() handles init=False fields.

Init-only variables

The other place where dataclass() inspects a type annotation is to determine if a field is an init-only variable. It does this by seeing if the type of a field is of type dataclasses.InitVar. If a field is an InitVar, it is considered a pseudo-field called an init-only field. As it is not a true field, it is not returned by the module-level fields() function. Init-only fields are added as parameters to the generated __init__() method, and are passed to the optional __post_init__() method. They are not otherwise used by dataclasses.

For example, suppose a field will be initialized from a database, if a value is not provided when creating the class:

@dataclass
class C:
    i: int
    j: int = None
    database: InitVar[DatabaseType] = None

    def __post_init__(self, database):
        if self.j is None and database is not None:
            self.j = database.lookup('j')

c = C(10, database=my_database)

In this case, fields() will return Field objects for i and j, but not for database.

Frozen instances

It is not possible to create truly immutable Python objects. However, by passing frozen=True to the dataclass() decorator you can emulate immutability. In that case, dataclasses will add __setattr__() and __delattr__() methods to the class. These methods will raise a FrozenInstanceError when invoked.

There is a tiny performance penalty when using frozen=True: __init__() cannot use simple assignment to initialize fields, and must use object.__setattr__().

Inheritance

When the dataclass is being created by the dataclass() decorator, it looks through all of the class’s base classes in reverse MRO (that is, starting at object) and, for each dataclass that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes. An example:

@dataclass
class Base:
    x: Any = 15.0
    y: int = 0

@dataclass
class C(Base):
    z: int = 10
    x: int = 15

The final list of fields is, in order, x, y, z. The final type of x is int, as specified in class C.

The generated __init__() method for C will look like:

def __init__(self, x: int = 15, y: int = 0, z: int = 10):

Re-ordering of keyword-only parameters in __init__()

After the parameters needed for __init__() are computed, any keyword-only parameters are moved to come after all regular (non-keyword-only) parameters. This is a requirement of how keyword-only parameters are implemented in Python: they must come after non-keyword-only parameters.

In this example, Base.y, Base.w, and D.t are keyword-only fields, and Base.x and D.z are regular fields:

@dataclass
class Base:
    x: Any = 15.0
    _: KW_ONLY
    y: int = 0
    w: int = 1

@dataclass
class D(Base):
    z: int = 10
    t: int = field(kw_only=True, default=0)

The generated __init__() method for D will look like:

def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):

Note that the parameters have been re-ordered from how they appear in the list of fields: parameters derived from regular fields are followed by parameters derived from keyword-only fields.

The relative ordering of keyword-only parameters is maintained in the re-ordered __init__() parameter list.



from Hacker News https://ift.tt/2Jngq09

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.