plotext
plots directly on terminal, it has no dependencies and the syntax is very similar to matplotlib
. It also provide a simple command line tool.
Note: there are many new feautures from the previous version, any bug report is usefull and very welcomed.
Table of Contents
Scatter Plot
Here is a basic example of a scatter plot:
import plotext as plt
y = plt.sin(100, 3) # sinuisodal signal with 100 points and 3 periods
plt.scatter(y)
plt.plotsize(100, 30)
plt.title("Scatter Plot Example")
plt.show()
which prints this on terminal:
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; y = plt.sin(100, 3); plt.scatter(y); plt.plotsize(100, 30); plt.title('Scatter Plot Example'); plt.show()"
Access the scatter
docstring for more documentation.
Note: the higher resolution marker shown in the picture doesnt work in Windows for now, use other available markers in this case, like dot
, big
or others. See the section Plot Aspect for further guidance.
Line Plot
For a line plot use the the plot
function instead:
import plotext as plt
y = plt.sin(100, 3)
plt.plot(y)
plt.plotsize(100, 30)
plt.title("Plot Example")
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; y = plt.sin(100, 3); plt.plot(y); plt.plotsize(100, 30); plt.title('Plot Example'); plt.show()"
Access the plot
docstring for more documentation.
Log Plot
For a log plot use the the xscale()
or yscale()
functions after the plotting functions:
import plotext as plt
l = 10 ** 4
x = range(1, l + 1)
y = plt.sin(l, 2)
plt.plot(x, y)
plt.plotsize(100, 30)
plt.xscale("log")
plt.yscale("linear")
plt.title("Logarithmic Plot")
plt.xlabel("logarithmic scale")
plt.ylabel("linear scale")
plt.grid(1, 0)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; l = 10 ** 4; x = range(1, l + 1); y = plt.sin(l, 2); plt.plot(x, y); plt.plotsize(100, 30); plt.xscale('log'); plt.yscale('linear'); plt.title('Logarithmic Plot'); plt.xlabel('logarithmic scale'); plt.ylabel('linear scale'); plt.grid(1, 0); plt.show()"
Access the xscale
and yscale
docstring for more documentation.
Stem Plot
For a stem plot use either fillx
or filly
parameters. Here is a bisic example:
import plotext as plt
y = plt.sin(50, 2)
plt.scatter(y, fillx = True)
plt.plotsize(100, 30)
plt.title("Stem Plot")
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; y = plt.sin(50, 2); plt.scatter(y, fillx = True); plt.plotsize(100, 30); plt.title('Stem Plot'); plt.show()"
Multiple Data Sets
Multiple data sets can be plotted using consecutive scatter
or plot
functions. Here is a basic example:
import plotext as plt
y1 = plt.sin(1000, 3)
y2 = plt.sin(1000, 3, 1.5, phase = 1)
plt.plot(y1, label = "plot")
plt.scatter(y2, label = "scatter", marker = "small")
plt.plotsize(100, 30)
plt.title("Multiple Data Set")
plt.show()
Using the label
parameter inside the plotting calls, a legend is automatically added in the upper left corner of the plot.
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; y1 = plt.sin(1000, 3); y2 = plt.sin(1000, 3, 1.5, phase = 1); plt.plot(y1, label = 'plot'); plt.scatter(y2, label = 'scatter', marker = 'small'); plt.plotsize(100, 30); plt.title('Multiple Data Set'); plt.show()"
Double Y Axis
Data could be plotted indipendently on both left and right y
axes, using the yaxis
parameter. Here is a simple example:
import plotext as plt
y1 = plt.sin(1000, 3)
y2 = [2 * el for el in plt.sin(1000, 1, 0, phase = 1)]
plt.plot(y1, label = "plot", yaxis = "left")
plt.scatter(y2, label = "scatter", marker = "small", yaxis = "right")
plt.plotsize(100, 30)
plt.title("Double Y Axis")
plt.ylabel("left axis", "right axis")
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; y1 = plt.sin(1000, 3); y2 = [2 * el for el in plt.sin(1000, 1, 0, phase = 1)]; plt.plot(y1, label = 'plot'); plt.scatter(y2, label = 'scatter', marker = 'small', yaxis = 'right'); plt.plotsize(100, 30); plt.title('Double Y Axis'); plt.ylabel('left axis', 'right axis'); plt.show()"
The yaxis
parameter is also used in the functions yscale
, yticks
, ylim
, plot
, bar
and hist
.
Bar Plot
For a bar plot use the the bar
function. Here is an example:
import plotext as plt
cities = ["Tokyo", "Delhi", "Shanghai", "São Paulo", "Mexico City", "Cairo", "Mumbai", "Beijing"]
population = [37400068, 28514000, 25582000, 21650000, 21581000, 20076000, 19980000, 19618000]
plt.bar(cities, population)
plt.plotsize(100, 30)
plt.title("Bar Plot of the World Largest Cities")
plt.xlabel("City")
plt.ylabel("Population")
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; cities = ['Tokyo', 'Delhi', 'Shanghai', 'São Paulo', 'Mexico City', 'Cairo', 'Mumbai', 'Beijing']; population = [37400068, 28514000, 25582000, 21650000, 21581000, 20076000, 19980000, 19618000]; plt.bar(cities, population); plt.plotsize(100, 30); plt.title('Bar Plot of the World Largest Cities'); plt.xlabel('City'); plt.ylabel('Population'); plt.show()"
Access the bar
docstring for more documentation. Note: for now it doesn't work with log scale.
Note: the higher resolution marker shown in the picture doesnt work in Windows for now, use other available markers in this case, like dot
, big
or others. See the section
Histogram Plot
For a histogram plot use the the hist
function. Here is an example:
import plotext as plt
import random
l = 10 ** 3
data1 = [random.gauss(0, 1) for el in range(10 * l)]
data2 = [random.gauss(3, 1) for el in range(6 * l)]
data3 = [random.gauss(6, 1) for el in range(4 * l)]
plt.clp()
bins = 60
plt.hist(data1, bins, label="mean 0")
plt.hist(data2, bins, label="mean 3")
plt.hist(data3, bins, label="mean 6")
plt.title("Histogram Plot")
plt.xlabel("data bin")
plt.ylabel("frequency")
plt.plotsize(100, 30)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; import random; l = 10 ** 3; data1 = [random.gauss(0, 1) for el in range(10 * l)]; data2 = [random.gauss(3, 1) for el in range(6 * l)]; data3 = [random.gauss(6, 1) for el in range(4 * l)]; plt.clp(); bins = 60; plt.hist(data1, bins, label='mean 0'); plt.hist(data2, bins, label='mean 3'); plt.hist(data3, bins, label='mean 6'); plt.title('Histogram Plot'); plt.xlabel('data bin'); plt.ylabel('frequency'); plt.plotsize(100, 30); plt.show()"
Access the hist
docstring for more documentation. Note: for now it doesn't work with log scale.
Data Ticks
You can change the numerical ticks on both axes with the following three functions - to be placed before show()
:
plt.ticks(xnum, ynum)
sets the ticks frequency on respectivelly thex
andy
axis.plt.xticks(ticks, labels)
manually sets thex
ticks to the list oflabels
at the list of coordinates provided inticks
. If only one list is provided (ticks
), the labels will correspond to the coordinates.plt.yticks(ticks, labels)
is the equivalent ofplt.xticks()
but for they
axis. It also takes the optional parameteryaxis
in case multipley
axes are used in the plot.
Here is a coded example:
import plotext as plt
l, n = 1000, 3
y1 = plt.sin(l, n)
y2 = plt.sin(l, n, 2)
import numpy as np
xticks = np.arange(0, l + l / (2 * n), l / (2 * n))
xlabels = [str(i) + "π" for i in range(2 * n + 1)]
plt.scatter(y1, label = "periodic signal")
plt.scatter(y2, label = "decaying signal", marker = "small", color = "gold")
plt.plotsize(100, 30)
plt.ticks(None, 3)
plt.xticks(xticks, xlabels)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; l, n = 1000, 3; y1 = plt.sin(l, n); y2 = plt.sin(l, n, 2); import numpy as np; xticks = np.arange(0, l + l / (2 * n), l / (2 * n)); xlabels = [str(i) + 'π' for i in range(2 * n + 1)]; plt.scatter(y1, label = 'periodic signal'); plt.scatter(y2, label = 'decaying signal', marker = 'small', color = 'gold'); plt.plotsize(100, 30); plt.ticks(None, 3); plt.xticks(xticks, xlabels); plt.show()"
Access the ticks
, xticks
, yticks
docstrings for more documentation.
Date Time Plot
To plot dates and/or times use the string_to_time()
function like in the example below:
import plotext as plt
plt.clp()
dates = ["01/01/2021 12:20", "02/01/2021 15:40", "03/01/2021 15:10", "04/01/2021 15:24", "05/01/2021", "05/01/2021 18:10", "05/01/2021 23:20", "06/01/2021 12:10","07/01/2021"]
prices = [100, 110, 130, 140, 150, 160, 170, 180]
dates_x = [plt.string_to_time(el) for el in dates]
plt.plot(dates_x, prices, marker = ".")
plt.scatter(dates_x, prices, marker = "small")
plt.xticks(dates_x, dates)
plt.title("Date-Time Plot")
plt.xlabel("Date-Time")
plt.ylabel("Stock Price $")
plt.plotsize(100, 30)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; plt.clp(); dates = ['01/01/2021 12:20', '02/01/2021 15:40', '03/01/2021 15:10', '04/01/2021 15:24', '05/01/2021', '05/01/2021 18:10', '05/01/2021 23:20', '06/01/2021 12:10','07/01/2021']; prices = [100, 110, 130, 140, 150, 160, 170, 180]; dates_x = [plt.string_to_time(el) for el in dates]; plt.plot(dates_x, prices, marker = '.'); plt.scatter(dates_x, prices, marker = 'small'); plt.xticks(dates_x, dates); plt.title('Date-Time Plot'); plt.xlabel('Date-Time'); plt.ylabel('Stock Price $'); plt.plotsize(100, 30); plt.show()"
Access the string_to_time
docstrings for more documentation.
Plot Limits
The plot limits are set automatically, to set them manually you can use the following functions - to be placed before show()
:
plt.xlim(xmin, xmax)
sets the minimum and maximum limits of the plot on thex
axis. It requires a list of two numbers, where the firstxmin
sets the left (minimum) limit and the secondxmax
the right (maximum) limit. If one or both values are not provided, they are calculated automatically.plt.ylim(ymin, ymax)
is the equivalent ofplt.xlim()
but for they
axis. It also takes the optional parameteryaxis
in case multiple y axes are used in the plot.
Here is a coded example:
import plotext as plt
l, n = 1000, 2
x = range(1, l + 1)
y = plt.sin(l, n)
plt.scatter(x, y, color = "indigo")
plt.xlim(x[0] - 101, x[-1] + 100)
plt.ylim(-1.2, 1.2)
plt.plotsize(100, 30)
plt.show()
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; l, n = 1000, 2; x = range(1, l + 1); y = plt.sin(l, n); plt.scatter(x, y, color = 'indigo'); plt.xlim(x[0] - 101, x[-1] + 100); plt.ylim(-1.2, 1.2); plt.plotsize(100, 30); plt.show()"
Plot Aspect
You can personalize the plot aspect in many ways. You could use the following parameters - to be placed inside the scatter
, plot
, bar
and hist
calls:
marker
sets the marker used to identify each data point to the specified character. For exampleplt.scatter(data, marker = "x")
. Access themarkers()
function for further marker codes.color = color
sets the color of themarker
used. Access thecolors()
function for the color codes available.fillx = True
fills the area between the data and thex
axis with data points (if used insidescatter
) or line points (if used insideplot
). For example:plt.plot(data, fillx = True)
. By defaultfillx = False
filly
is the correspondent parameter offillx
but for they
axis.- Note that the functions
bar
andhist
use the parameterfill
(instead offillx
andfilly
) which is used to fill the bars with colors
You could also use the following functions - to be placed before show()
:
plotsize(width, height)
sets the width and height of the plot to the desired values. Note that the plot automatically extends to fill the entire terminal: use this function in order to reduce this size.title(string)
adds a plot title on the top of the plot.xlabel(string)
andylabel(string)
adds a label for respectively thex
andy
axis on the bottom of the plot. If two strings are provided toplt.ylabel()
the second is indended for the righty
axis.grid(xbool, ybool)
adds thex
grid lines to the plot ifxbool == True
and they
grid lines ifybool == True
. If only one Boolean value is provided both grid lines are set simultaneously.xaxes(bool1, bool2)
adds the lowerx
axis ifbool1 == True
and the upperx
axis ifbool2 == True
. If only one boolean value is provided both axes are set simultaneously.yaxes(bool1, bool2)
adds the lefty
axis ifbool1 == True
and the righty
axis ifbool2 == True
. If only one boolean value is provided both axes are set simultaneously.canvas_color(color)
sets the color of the plot canvas alone (the area where the data is plotted).axes_color(color)
sets the background color of all the labels surrounding the actual plot, i.e. the axes, axes labels and ticks, title and legend, if present.ticks_color(color)
sets the (full-ground) color of the axes ticks and of the grid lines, if present.colorless()
(in shortcls()
) removes all colors from the current plot.
Here is a coded example:
import plotext as plt
l, n = 1000, 2
x = range(1, l + 1)
y = plt.sin(l, n)
plt.plot(x, y1, label = "periodic signal", color = "violet", marker = "small")
plt.plotsize(100, 30)
plt.grid(True)
plt.title("Plot Style Example")
plt.xlabel("x axis label")
plt.ylabel("y axis label")
plt.canvas_color("white")
plt.axes_color("cloud")
plt.ticks_color("iron")
plt.xaxes(1, 0)
plt.yaxes(1, 0)
plt.ticks(10)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; l, n = 1000, 2; x = range(1, l + 1); y = plt.sin(l, n); plt.plot(x, y, label = 'periodic signal', color = 'violet', marker = 'small'); plt.plotsize(100, 30); plt.grid(True); plt.title('Plot Style Example'); plt.xlabel('x axis label'); plt.ylabel('y axis label'); plt.canvas_color('white'); plt.axes_color('cloud'); plt.ticks_color('iron'); plt.xaxes(1, 0); plt.yaxes(1, 0); plt.ticks(10); plt.show()"
Here are the colors and markers codes:
Note: using flash
will result in an actual white flashing marker (therefore it will not work with white canvas background color).
Multiplie Subplots
In order to plot a grid of plots, use the following main functions:
plt.subplots(rows, cols)
creats a matrix of plots with the given number of rows and columns.plt.subplot(row, col)
access the plot at the given row and column, counting (from 1) from the upper left corner of the matrix of plots, previously set.
Here is a coded basic example:
import plotext as plt
l, n = 1000, 5
y = plt.sin(l, n)
plt.clf()
plt.subplots(2, 1)
plt.subplot(1, 1)
plt.plot(y, yaxis = "right")
plt.plotsize(100, 27)
plt.subplot(2, 1)
plt.hist(y, color = "indigo")
plt.plotsize(100, 27)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; l, n = 1000, 5; y = plt.sin(l, n); plt.clf(); plt.subplots(2, 1); plt.subplot(1, 1); plt.plot(y, yaxis = 'right'); plt.plotsize(100, 27); plt.subplot(2, 1); plt.hist(y, color = 'indigo'); plt.plotsize(100, 27); plt.show()"
Streaming Data
When streaming a continuos flow of data, consider using the following functions:
clear_figure
(in shortclf
) clears the entire figure, including its subplots.clear_plot()
(in shortclp()
) clears the plot and all its internal parameters; it is useful when running the same script several times in order to avoid adding the same data to the plot; it is very similar tocla()
inmatplotlib
.clear_data()
(in shortcld()
) clear only the plot data (without clearing the plot style).clear_terminal()
(in shortclt()
) clear the terminal before the actual plot.sleep(time)
is used in order to reduce a possible screen flickering; for examplesleep(0.01)
would add approximately 10 ms to the computation. Note that thetime
parameters will depend on your processor speed and it needs some manual tweaking.- The function
colorless()
is recommended to make the streaming more responsive, but not mandatory.
Here is a coded example:
import plotext as plt
import numpy as np
l, n = 1000, 2
x = np.arange(0, l)
xticks = np.linspace(0, l - 1, 5)
xlabels = [str(i) + "π" for i in range(5)]
frames = 100
plt.clf()
plt.ylim(-1, 1)
plt.xticks(xticks, xlabels)
plt.yticks([-1, 0, 1])
plt.plotsize(100, 30)
plt.title("Streaming Data")
plt.colorless()
for i in range(frames):
y = plt.sin(l, n, 0, phase = 2 * i / frames)
plt.cld()
plt.clt()
plt.scatter(x, y, marker = "dot")
plt.sleep(0.01)
plt.show()
The equivalent direct terminal command line is:
python3 -m plotext "import plotext as plt; import numpy as np; l, n = 1000, 2; x = np.arange(0, l); xticks = np.linspace(0, l - 1, 5); xlabels = [str(i) + 'pi' for i in range(5)]; frames = 100; plt.clf(); plt.ylim(-1, 1); plt.xticks(xticks, xlabels); plt.yticks([-1, 0, 1]); plt.plotsize(100, 30); plt.title('Streaming Data'); plt.colorless(); y = lambda i: plt.sin(l, n, 0, phase = 2 * i / frames); [(plt.cld(), plt.scatter(x, y(i), marker = 'dot'), plt.sleep(0.01), plt.show()) for i in range(frames)]"
Plotting the same data using matplotlib
was roughly 10 to 50 times slower on my Linux-based machine (depending on the colors settings and data size).
Other Functions
savefig(path)
saves the plot as a text file at thepath
provided. Note: no colors are preserved at the moment, when saving.get_canvas()
return the plot final canvas as a string. To be used after theshow
function possibly with itshide
parameter set to True.version()
returns the version of the current installedplotext
package.sin()
returns a sinusoidal function usefull for testing. Access its docstring for durther documentation.plt.docstrings()
prints all the available doc-strings.test()
runs all the above tests in sequence:
import plotext as plt
plt.test()
Installation
To install the latest version of plotext
use: pip install plotext --upgrade
or in Linux sudo -H pip install plotext --upgrade
Main Updates:
- from version 3.1.0: fixed issue of plot resizing reported by @nicrip
- from version 3.0.1: added
clear_data()
andtest()
functions
from version 2:
- Direct terminal command line tool added
- Smaller marker added (with improved resolution), with new marker codes
- Subplots added
- Log plots added
- Stem plot added
- Double Y Axes added
- Bar plot added
- Date/Time Plot added
get_canvas()
function addedsin()
function addedclear_figure()
function addedfigsize()
changed toplotsize()
nocolor()
changed tocolorless()
frame
option removed and replaced withxaxes
andyaxes
.- most of the code re-written
Future Plans:
Under request (just open an issue report about it):
- higher resolution marker support for Windows (the one named
small
) - log scale for bar/hist plot
- subplots with
columnspan
androwspan
parameters - Spider/Idle terminal support or for other more rare terminals (if possible)
- saving plot text files with color (not sure if usefull)
Any help or new ideas are welcomed.
from Hacker News https://ift.tt/3yoPs2d
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.