@@ -0,0 +1,64 @@ +# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause +%YAML 1.2 +--- +$id: https://ift.tt/3aIYxt1 +$schema: https://ift.tt/32TGQTg + +title: Apple ARM Machine Device Tree Bindings + +maintainers: + - Hector Martin <marcan@marcan.st> + +description: | + ARM platforms using SoCs designed by Apple Inc., branded "Apple Silicon". + + This currently includes devices based on the "M1" SoC, starting with the + three Mac models released in late 2020: + + - Mac mini (M1, 2020) + - MacBook Pro (13-inch, M1, 2020) + - MacBook Air (M1, 2020) + + The compatible property should follow this format: + + compatible = "apple,<targettype>", "apple,<socid>", "apple,arm-platform"; + + <targettype> represents the board/device and comes from the `target-type` + property of the root node of the Apple Device Tree, lowercased. It can be + queried on macOS using the following command: + + $ ioreg -d2 -l | grep target-type + + <socid> is the lowercased SoC ID. Apple uses at least *five* different + names for their SoCs: + + - Marketing name ("M1") + - Internal name ("H13G") + - Codename ("Tonga") + - SoC ID ("T8103") + - Package/IC part number ("APL1102") + + Devicetrees should use the lowercased SoC ID, to avoid confusion if + multiple SoCs share the same marketing name. This can be obtained from + the `compatible` property of the arm-io node of the Apple Device Tree, + which can be queried as follows on macOS: + + $ ioreg -n arm-io | grep compatible + +properties: + $nodename: + const: "/" + compatible: + oneOf: + - description: Apple M1 SoC based platforms + items: + - enum: + - apple,j274 # Mac mini (M1, 2020) + - apple,j293 # MacBook Pro (13-inch, M1, 2020) + - apple,j313 # MacBook Air (M1, 2020) + - const: apple,t8103 + - const: apple,arm-platform + +additionalProperties: true + +... @@ -85,6 +85,8 @@ properties: compatible: enum: + - apple,icestorm + - apple,firestorm - arm,arm710t - arm,arm720t - arm,arm740t @@ -54,6 +54,7 @@ properties: compatible: items: - enum: + - apple,simple-framebuffer - allwinner,simple-framebuffer - amlogic,simple-framebuffer - const: simple-framebuffer @@ -84,9 +85,13 @@ properties: Format of the framebuffer: * `a8b8g8r8` - 32-bit pixels, d[31:24]=a, d[23:16]=b, d[15:8]=g, d[7:0]=r * `r5g6b5` - 16-bit pixels, d[15:11]=r, d[10:5]=g, d[4:0]=b + * `x2r10g10b10` - 32-bit pixels, d[29:20]=r, d[19:10]=g, d[9:0]=b + * `x8r8g8b8` - 32-bit pixels, d[23:16]=r, d[15:8]=g, d[7:0]=b enum: - a8b8g8r8 - r5g6b5 + - x2r10g10b10 + - x8r8g8b8 display: $ref: /schemas/types.yaml#/definitions/phandle @@ -0,0 +1,88 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: https://ift.tt/3tVGCa1 +$schema: https://ift.tt/32TGQTg + +title: Apple Interrupt Controller + +maintainers: + - Hector Martin <marcan@marcan.st> + +description: | + The Apple Interrupt Controller is a simple interrupt controller present on + Apple ARM SoC platforms, including various iPhone and iPad devices and the + "Apple Silicon" Macs. + + It provides the following features: + + - Level-triggered hardware IRQs wired to SoC blocks + - Single mask bit per IRQ + - Per-IRQ affinity setting + - Automatic masking on event delivery (auto-ack) + - Software triggering (ORed with hw line) + - 2 per-CPU IPIs (meant as "self" and "other", but they are interchangeable + if not symmetric) + - Automatic prioritization (single event/ack register per CPU, lower IRQs = + higher priority) + - Automatic masking on ack + - Default "this CPU" register view and explicit per-CPU views + + This device also represents the FIQ interrupt sources on platforms using AIC, + which do not go through a discrete interrupt controller. + +allOf: + - $ref: /schemas/interrupt-controller.yaml# + +properties: + compatible: + items: + - const: apple,t8103-aic + - const: apple,aic + + interrupt-controller: true + + '#interrupt-cells': + const: 3 + description: | + The 1st cell contains the interrupt type: + - 0: Hardware IRQ + - 1: FIQ + + The 2nd cell contains the interrupt number. + - HW IRQs: interrupt number + - FIQs: + - 0: physical HV timer + - 1: virtual HV timer + - 2: physical guest timer + - 3: virtual guest timer + + The 3rd cell contains the interrupt flags. This is normally + IRQ_TYPE_LEVEL_HIGH (4). + + reg: + description: | + Specifies base physical address and size of the AIC registers. + maxItems: 1 + +required: + - compatible + - '#interrupt-cells' + - interrupt-controller + - reg + +additionalProperties: false + +examples: + - | + soc { + #address-cells = <2>; + #size-cells = <2>; + + aic: interrupt-controller@23b100000 { + compatible = "apple,t8103-aic", "apple,aic"; + #interrupt-cells = <3>; + interrupt-controller; + reg = <0x2 0x3b100000 0x0 0x8000>; + }; + }; @@ -34,11 +34,30 @@ properties: - arm,armv8-timer interrupts: + minItems: 1 + maxItems: 5 items: - description: secure timer irq - description: non-secure timer irq - description: virtual timer irq - description: hypervisor timer irq + - description: hypervisor virtual timer irq + + interrupt-names: + oneOf: + - minItems: 2 + items: + - const: phys + - const: virt + - const: hyp-phys + - const: hyp-virt + - minItems: 3 + items: + - const: sec-phys + - const: phys + - const: virt + - const: hyp-phys + - const: hyp-virt clock-frequency: description: The frequency of the main counter, in Hz. Should be present @@ -103,6 +103,8 @@ patternProperties: description: Anvo-Systems Dresden GmbH "^apm,.*": description: Applied Micro Circuits Corporation (APM) + "^apple,.*": + description: Apple Inc. "^aptina,.*": description: Aptina Imaging "^arasan,.*": @@ -146,6 +146,362 @@ There are also equivalents to memcpy. The ins() and outs() functions copy bytes, words or longs to the given port. +__iomem pointer tokens +====================== + +The data type for an MMIO address is an ``__iomem`` qualified pointer, such as +``void __iomem *reg``. On most architectures it is a regular pointer that +points to a virtual memory address and can be offset or dereferenced, but in +portable code, it must only be passed from and to functions that explicitly +operated on an ``__iomem`` token, in particular the ioremap() and +readl()/writel() functions. The 'sparse' semantic code checker can be used to +verify that this is done correctly. + +While on most architectures, ioremap() creates a page table entry for an +uncached virtual address pointing to the physical MMIO address, some +architectures require special instructions for MMIO, and the ``__iomem`` pointer +just encodes the physical address or an offsettable cookie that is interpreted +by readl()/writel(). + +Differences between I/O access functions +======================================== + +readq(), readl(), readw(), readb(), writeq(), writel(), writew(), writeb() + + These are the most generic accessors, providing serialization against other + MMIO accesses and DMA accesses as well as fixed endianness for accessing + little-endian PCI devices and on-chip peripherals. Portable device drivers + should generally use these for any access to ``__iomem`` pointers. + + Note that posted writes are not strictly ordered against a spinlock, see + Documentation/driver-api/io_ordering.rst. + +readq_relaxed(), readl_relaxed(), readw_relaxed(), readb_relaxed(), +writeq_relaxed(), writel_relaxed(), writew_relaxed(), writeb_relaxed() + + On architectures that require an expensive barrier for serializing against + DMA, these "relaxed" versions of the MMIO accessors only serialize against + each other, but contain a less expensive barrier operation. A device driver + might use these in a particularly performance sensitive fast path, with a + comment that explains why the usage in a specific location is safe without + the extra barriers. + + See memory-barriers.txt for a more detailed discussion on the precise ordering + guarantees of the non-relaxed and relaxed versions. + +ioread64(), ioread32(), ioread16(), ioread8(), +iowrite64(), iowrite32(), iowrite16(), iowrite8() + + These are an alternative to the normal readl()/writel() functions, with almost + identical behavior, but they can also operate on ``__iomem`` tokens returned + for mapping PCI I/O space with pci_iomap() or ioport_map(). On architectures + that require special instructions for I/O port access, this adds a small + overhead for an indirect function call implemented in lib/iomap.c, while on + other architectures, these are simply aliases. + +ioread64be(), ioread32be(), ioread16be() +iowrite64be(), iowrite32be(), iowrite16be() + + These behave in the same way as the ioread32()/iowrite32() family, but with + reversed byte order, for accessing devices with big-endian MMIO registers. + Device drivers that can operate on either big-endian or little-endian + registers may have to implement a custom wrapper function that picks one or + the other depending on which device was found. + + Note: On some architectures, the normal readl()/writel() functions + traditionally assume that devices are the same endianness as the CPU, while + using a hardware byte-reverse on the PCI bus when running a big-endian kernel. + Drivers that use readl()/writel() this way are generally not portable, but + tend to be limited to a particular SoC. + +hi_lo_readq(), lo_hi_readq(), hi_lo_readq_relaxed(), lo_hi_readq_relaxed(), +ioread64_lo_hi(), ioread64_hi_lo(), ioread64be_lo_hi(), ioread64be_hi_lo(), +hi_lo_writeq(), lo_hi_writeq(), hi_lo_writeq_relaxed(), lo_hi_writeq_relaxed(), +iowrite64_lo_hi(), iowrite64_hi_lo(), iowrite64be_lo_hi(), iowrite64be_hi_lo() + + Some device drivers have 64-bit registers that cannot be accessed atomically + on 32-bit architectures but allow two consecutive 32-bit accesses instead. + Since it depends on the particular device which of the two halves has to be + accessed first, a helper is provided for each combination of 64-bit accessors + with either low/high or high/low word ordering. A device driver must include + either <linux/io-64-nonatomic-lo-hi.h> or <linux/io-64-nonatomic-hi-lo.h> to + get the function definitions along with helpers that redirect the normal + readq()/writeq() to them on architectures that do not provide 64-bit access + natively. + +__raw_readq(), __raw_readl(), __raw_readw(), __raw_readb(), +__raw_writeq(), __raw_writel(), __raw_writew(), __raw_writeb() + + These are low-level MMIO accessors without barriers or byteorder changes and + architecture specific behavior. Accesses are usually atomic in the sense that + a four-byte __raw_readl() does not get split into individual byte loads, but + multiple consecutive accesses can be combined on the bus. In portable code, it + is only safe to use these to access memory behind a device bus but not MMIO + registers, as there are no ordering guarantees with regard to other MMIO + accesses or even spinlocks. The byte order is generally the same as for normal + memory, so unlike the other functions, these can be used to copy data between + kernel memory and device memory. + +inl(), inw(), inb(), outl(), outw(), outb() + + PCI I/O port resources traditionally require separate helpers as they are + implemented using special instructions on the x86 architecture. On most other + architectures, these are mapped to readl()/writel() style accessors + internally, usually pointing to a fixed area in virtual memory. Instead of an + ``__iomem`` pointer, the address is a 32-bit integer token to identify a port + number. PCI requires I/O port access to be non-posted, meaning that an outb() + must complete before the following code executes, while a normal writeb() may + still be in progress. On architectures that correctly implement this, I/O port + access is therefore ordered against spinlocks. Many non-x86 PCI host bridge + implementations and CPU architectures however fail to implement non-posted I/O + space on PCI, so they can end up being posted on such hardware. + + In some architectures, the I/O port number space has a 1:1 mapping to + ``__iomem`` pointers, but this is not recommended and device drivers should + not rely on that for portability. Similarly, an I/O port number as described + in a PCI base address register may not correspond to the port number as seen + by a device driver. Portable drivers need to read the port number for the + resource provided by the kernel. + + There are no direct 64-bit I/O port accessors, but pci_iomap() in combination + with ioread64/iowrite64 can be used instead. + +inl_p(), inw_p(), inb_p(), outl_p(), outw_p(), outb_p() + + On ISA devices that require specific timing, the _p versions of the I/O + accessors add a small delay. On architectures that do not have ISA buses, + these are aliases to the normal inb/outb helpers. + +readsq, readsl, readsw, readsb +writesq, writesl, writesw, writesb +ioread64_rep, ioread32_rep, ioread16_rep, ioread8_rep +iowrite64_rep, iowrite32_rep, iowrite16_rep, iowrite8_rep +insl, insw, insb, outsl, outsw, outsb + + These are helpers that access the same address multiple times, usually to copy + data between kernel memory byte stream and a FIFO buffer. Unlike the normal + MMIO accessors, these do not perform a byteswap on big-endian kernels, so the + first byte in the FIFO register corresponds to the first byte in the memory + buffer regardless of the architecture. + +Device memory mapping modes +=========================== + +Some architectures support multiple modes for mapping device memory. +ioremap_*() variants provide a common abstraction around these +architecture-specific modes, with a shared set of semantics. + +ioremap() is the most common mapping type, and is applicable to typical device +memory (e.g. I/O registers). Other modes can offer weaker or stronger +guarantees, if supported by the architecture. From most to least common, they +are as follows: + +ioremap() +--------- + +The default mode, suitable for most memory-mapped devices, e.g. control +registers. Memory mapped using ioremap() has the following characteristics: + +* Uncached - CPU-side caches are bypassed, and all reads and writes are handled + directly by the device +* No speculative operations - the CPU may not issue a read or write to this + memory, unless the instruction that does so has been reached in committed + program flow. +* No reordering - The CPU may not reorder accesses to this memory mapping with + respect to each other. On some architectures, this relies on barriers in + readl_relaxed()/writel_relaxed(). +* No repetition - The CPU may not issue multiple reads or writes for a single + program instruction. +* No write-combining - Each I/O operation results in one discrete read or write + being issued to the device, and multiple writes are not combined into larger + writes. This may or may not be enforced when using __raw I/O accessors or + pointer dereferences. +* Non-executable - The CPU is not allowed to speculate instruction execution + from this memory (it probably goes without saying, but you're also not + allowed to jump into device memory). + +On many platforms and buses (e.g. PCI), writes issued through ioremap() +mappings are posted, which means that the CPU does not wait for the write to +actually reach the target device before retiring the write instruction. + +On many platforms, I/O accesses must be aligned with respect to the access +size; failure to do so will result in an exception or unpredictable results. + +ioremap_wc() +------------ + +Maps I/O memory as normal memory with write combining. Unlike ioremap(), + +* The CPU may speculatively issue reads from the device that the program + didn't actually execute, and may choose to basically read whatever it wants. +* The CPU may reorder operations as long as the result is consistent from the + program's point of view. +* The CPU may write to the same location multiple times, even when the program + issued a single write. +* The CPU may combine several writes into a single larger write. + +This mode is typically used for video framebuffers, where it can increase +performance of writes. It can also be used for other blocks of memory in +devices (e.g. buffers or shared memory), but care must be taken as accesses are +not guaranteed to be ordered with respect to normal ioremap() MMIO register +accesses without explicit barriers. + +On a PCI bus, it is usually safe to use ioremap_wc() on MMIO areas marked as +``IORESOURCE_PREFETCH``, but it may not be used on those without the flag. +For on-chip devices, there is no corresponding flag, but a driver can use +ioremap_wc() on a device that is known to be safe. + +ioremap_wt() +------------ + +Maps I/O memory as normal memory with write-through caching. Like ioremap_wc(), +but also, + +* The CPU may cache writes issued to and reads from the device, and serve reads + from that cache. + +This mode is sometimes used for video framebuffers, where drivers still expect +writes to reach the device in a timely manner (and not be stuck in the CPU +cache), but reads may be served from the cache for efficiency. However, it is +rarely useful these days, as framebuffer drivers usually perform writes only, +for which ioremap_wc() is more efficient (as it doesn't needlessly trash the +cache). Most drivers should not use this. + +ioremap_np() +------------ + +Like ioremap(), but explicitly requests non-posted write semantics. On some +architectures and buses, ioremap() mappings have posted write semantics, which +means that writes can appear to "complete" from the point of view of the +CPU before the written data actually arrives at the target device. Writes are +still ordered with respect to other writes and reads from the same device, but +due to the posted write semantics, this is not the case with respect to other +devices. ioremap_np() explicitly requests non-posted semantics, which means +that the write instruction will not appear to complete until the device has +received (and to some platform-specific extent acknowledged) the written data. + +This mapping mode primarily exists to cater for platforms with bus fabrics that +require this particular mapping mode to work correctly. These platforms set the +``IORESOURCE_MEM_NONPOSTED`` flag for a resource that requires ioremap_np() +semantics and portable drivers should use an abstraction that automatically +selects it where appropriate (see the `Higher-level ioremap abstractions`_ +section below). + +The bare ioremap_np() is only available on some architectures; on others, it +always returns NULL. Drivers should not normally use it, unless they are +platform-specific or they derive benefit from non-posted writes where +supported, and can fall back to ioremap() otherwise. The normal approach to +ensure posted write completion is to do a dummy read after a write as +explained in `Accessing the device`_, which works with ioremap() on all +platforms. + +ioremap_np() should never be used for PCI drivers. PCI memory space writes are +always posted, even on architectures that otherwise implement ioremap_np(). +Using ioremap_np() for PCI BARs will at best result in posted write semantics, +and at worst result in complete breakage. + +Note that non-posted write semantics are orthogonal to CPU-side ordering +guarantees. A CPU may still choose to issue other reads or writes before a +non-posted write instruction retires. See the previous section on MMIO access +functions for details on the CPU side of things. + +ioremap_uc() +------------ + +ioremap_uc() behaves like ioremap() except that on the x86 architecture without +'PAT' mode, it marks memory as uncached even when the MTRR has designated +it as cacheable, see Documentation/x86/pat.rst. + +Portable drivers should avoid the use of ioremap_uc(). + +ioremap_cache() +--------------- + +ioremap_cache() effectively maps I/O memory as normal RAM. CPU write-back +caches can be used, and the CPU is free to treat the device as if it were a +block of RAM. This should never be used for device memory which has side +effects of any kind, or which does not return the data previously written on +read. + +It should also not be used for actual RAM, as the returned pointer is an +``__iomem`` token. memremap() can be used for mapping normal RAM that is outside +of the linear kernel memory area to a regular pointer. + +Portable drivers should avoid the use of ioremap_cache(). + +Architecture example +-------------------- + +Here is how the above modes map to memory attribute settings on the ARM64 +architecture: + ++------------------------+--------------------------------------------+ +| API | Memory region type and cacheability | ++------------------------+--------------------------------------------+ +| ioremap_np() | Device-nGnRnE | ++------------------------+--------------------------------------------+ +| ioremap() | Device-nGnRE | ++------------------------+--------------------------------------------+ +| ioremap_uc() | (not implemented) | ++------------------------+--------------------------------------------+ +| ioremap_wc() | Normal-Non Cacheable | ++------------------------+--------------------------------------------+ +| ioremap_wt() | (not implemented; fallback to ioremap) | ++------------------------+--------------------------------------------+ +| ioremap_cache() | Normal-Write-Back Cacheable | ++------------------------+--------------------------------------------+ + +Higher-level ioremap abstractions +================================= + +Instead of using the above raw ioremap() modes, drivers are encouraged to use +higher-level APIs. These APIs may implement platform-specific logic to +automatically choose an appropriate ioremap mode on any given bus, allowing for +a platform-agnostic driver to work on those platforms without any special +cases. At the time of this writing, the following ioremap() wrappers have such +logic: + +devm_ioremap_resource() + + Can automatically select ioremap_np() over ioremap() according to platform + requirements, if the ``IORESOURCE_MEM_NONPOSTED`` flag is set on the struct + resource. Uses devres to automatically unmap the resource when the driver + probe() function fails or a device in unbound from its driver. + + Documented in Documentation/driver-api/driver-model/devres.rst. + +of_address_to_resource() + + Automatically sets the ``IORESOURCE_MEM_NONPOSTED`` flag for platforms that + require non-posted writes for certain buses (see the nonposted-mmio and + posted-mmio device tree properties). + +of_iomap() + + Maps the resource described in a ``reg`` property in the device tree, doing + all required translations. Automatically selects ioremap_np() according to + platform requirements, as above. + +pci_ioremap_bar(), pci_ioremap_wc_bar() + + Maps the resource described in a PCI base address without having to extract + the physical address first. + +pci_iomap(), pci_iomap_wc() + + Like pci_ioremap_bar()/pci_ioremap_bar(), but also works on I/O space when + used together with ioread32()/iowrite32() and similar accessors + +pcim_iomap() + + Like pci_iomap(), but uses devres to automatically unmap the resource when + the driver probe() function fails or a device in unbound from its driver + + Documented in Documentation/driver-api/driver-model/devres.rst. + +Not using these wrappers may make drivers unusable on certain platforms with +stricter rules for mapping I/O memory. + Public Functions Provided ========================= @@ -310,6 +310,7 @@ IOMAP devm_ioremap() devm_ioremap_uc() devm_ioremap_wc() + devm_ioremap_np() devm_ioremap_resource() : checks resource, requests memory region, ioremaps devm_ioremap_resource_wc() devm_platform_ioremap_resource() : calls devm_ioremap_resource() for platform device diff --git a/MAINTAINERS b/MAINTAINERS index dec3739031fe7..1162b0917630a 100644 --- a/ MAINTAINERS+++ b/ MAINTAINERS@@ -1649,6 +1649,20 @@ F: arch/arm/mach-alpine/ F: arch/arm64/boot/dts/amazon/ F: drivers/*/*alpine* +ARM/APPLE MACHINE SUPPORT +M: Hector Martin <marcan@marcan.st> +L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers) +S: Maintained +W: https://asahilinux.org +B: https://ift.tt/3exT7SL +C: irc://chat.freenode.net/asahi-dev +T: git https://ift.tt/3tVcNqj +F: Documentation/devicetree/bindings/arm/apple.yaml +F: Documentation/devicetree/bindings/interrupt-controller/apple,aic.yaml +F: arch/arm64/boot/dts/apple/ +F: drivers/irqchip/irq-apple-aic.c +F: include/dt-bindings/interrupt-controller/apple-aic.h + ARM/ARTPEC MACHINE SUPPORT M: Jesper Nilsson <jesper.nilsson@axis.com> M: Lars Persson <lars.persson@axis.com> @@ -26,6 +26,13 @@ config ARCH_ALPINE This enables support for the Annapurna Labs Alpine Soc family. +config ARCH_APPLE + bool "Apple Silicon SoC family" + select APPLE_AIC + help + This enables support for Apple's in-house ARM SoC family, starting + with the Apple M1. + config ARCH_BCM2835 bool "Broadcom BCM2835 family" select TIMER_OF @@ -6,6 +6,7 @@ subdir-y += amazon subdir-y += amd subdir-y += amlogic subdir-y += apm +subdir-y += apple subdir-y += arm subdir-y += bitmain subdir-y += broadcom diff --git a/arch/arm64/boot/dts/apple/Makefile b/arch/arm64/boot/dts/apple/Makefile new file mode 100644 index 0000000000000..cbbd701ebf05b --- /dev/null +++ b/ arch/arm64/boot/dts/apple/Makefile@@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0 +dtb-$(CONFIG_ARCH_APPLE) += t8103-j274.dtb diff --git a/arch/arm64/boot/dts/apple/t8103-j274.dts b/arch/arm64/boot/dts/apple/t8103-j274.dts new file mode 100644 index 0000000000000..e0f6775b98783 --- /dev/null +++ b/ arch/arm64/boot/dts/apple/t8103-j274.dts@@ -0,0 +1,45 @@ +// SPDX-License-Identifier: GPL-2.0+ OR MIT +/* + * Apple Mac mini (M1, 2020) + * + * target-type: J274 + * + * Copyright The Asahi Linux Contributors + */ + +/dts-v1/; + +#include "t8103.dtsi" + +/ { + compatible = "apple,j274", "apple,t8103", "apple,arm-platform"; + model = "Apple Mac mini (M1, 2020)"; + + aliases { + serial0 = &serial0; + }; + + chosen { + #address-cells = <2>; + #size-cells = <2>; + ranges; + + stdout-path = "serial0"; + + framebuffer0: framebuffer@0 { + compatible = "apple,simple-framebuffer", "simple-framebuffer"; + reg = <0 0 0 0>; /* To be filled by loader */ + /* Format properties will be added by loader */ + status = "disabled"; + }; + }; + + memory@800000000 { + device_type = "memory"; + reg = <0x8 0 0x2 0>; /* To be filled by loader */ + }; +}; + +&serial0 { + status = "okay"; +}; diff --git a/arch/arm64/boot/dts/apple/t8103.dtsi b/arch/arm64/boot/dts/apple/t8103.dtsi new file mode 100644 index 0000000000000..a1e22a2ea2e53 --- /dev/null +++ b/ arch/arm64/boot/dts/apple/t8103.dtsi@@ -0,0 +1,135 @@ +// SPDX-License-Identifier: GPL-2.0+ OR MIT +/* + * Apple T8103 "M1" SoC + * + * Other names: H13G, "Tonga" + * + * Copyright The Asahi Linux Contributors + */ + +#include <dt-bindings/interrupt-controller/apple-aic.h> +#include <dt-bindings/interrupt-controller/irq.h> + +/ { + compatible = "apple,t8103", "apple,arm-platform"; + + #address-cells = <2>; + #size-cells = <2>; + + cpus { + #address-cells = <2>; + #size-cells = <0>; + + cpu0: cpu@0 { + compatible = "apple,icestorm"; + device_type = "cpu"; + reg = <0x0 0x0>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu1: cpu@1 { + compatible = "apple,icestorm"; + device_type = "cpu"; + reg = <0x0 0x1>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu2: cpu@2 { + compatible = "apple,icestorm"; + device_type = "cpu"; + reg = <0x0 0x2>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu3: cpu@3 { + compatible = "apple,icestorm"; + device_type = "cpu"; + reg = <0x0 0x3>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu4: cpu@10100 { + compatible = "apple,firestorm"; + device_type = "cpu"; + reg = <0x0 0x10100>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu5: cpu@10101 { + compatible = "apple,firestorm"; + device_type = "cpu"; + reg = <0x0 0x10101>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu6: cpu@10102 { + compatible = "apple,firestorm"; + device_type = "cpu"; + reg = <0x0 0x10102>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + + cpu7: cpu@10103 { + compatible = "apple,firestorm"; + device_type = "cpu"; + reg = <0x0 0x10103>; + enable-method = "spin-table"; + cpu-release-addr = <0 0>; /* To be filled by loader */ + }; + }; + + timer { + compatible = "arm,armv8-timer"; + interrupt-parent = <&aic>; + interrupt-names = "phys", "virt", "hyp-phys", "hyp-virt"; + interrupts = <AIC_FIQ AIC_TMR_GUEST_PHYS IRQ_TYPE_LEVEL_HIGH>, + <AIC_FIQ AIC_TMR_GUEST_VIRT IRQ_TYPE_LEVEL_HIGH>, + <AIC_FIQ AIC_TMR_HV_PHYS IRQ_TYPE_LEVEL_HIGH>, + <AIC_FIQ AIC_TMR_HV_VIRT IRQ_TYPE_LEVEL_HIGH>; + }; + + clk24: clock-24m { + compatible = "fixed-clock"; + #clock-cells = <0>; + clock-frequency = <24000000>; + clock-output-names = "clk24"; + }; + + soc { + compatible = "simple-bus"; + #address-cells = <2>; + #size-cells = <2>; + + ranges; + nonposted-mmio; + + serial0: serial@235200000 { + compatible = "apple,s5l-uart"; + reg = <0x2 0x35200000 0x0 0x1000>; + reg-io-width = <4>; + interrupt-parent = <&aic>; + interrupts = <AIC_IRQ 605 IRQ_TYPE_LEVEL_HIGH>; + /* + * TODO: figure out the clocking properly, there may + * be a third selectable clock. + */ + clocks = <&clk24>, <&clk24>; + clock-names = "uart", "clk_uart_baud0"; + status = "disabled"; + }; + + aic: interrupt-controller@23b100000 { + compatible = "apple,t8103-aic", "apple,aic"; + #interrupt-cells = <3>; + interrupt-controller; + reg = <0x2 0x3b100000 0x0 0x8000>; + }; + }; +}; @@ -32,6 +32,7 @@ CONFIG_ARCH_AGILEX=y CONFIG_ARCH_N5X=y CONFIG_ARCH_SUNXI=y CONFIG_ARCH_ALPINE=y +CONFIG_ARCH_APPLE=y CONFIG_ARCH_BCM2835=y CONFIG_ARCH_BCM4908=y CONFIG_ARCH_BCM_IPROC=y @@ -59,6 +59,7 @@ #define ARM_CPU_IMP_NVIDIA 0x4E #define ARM_CPU_IMP_FUJITSU 0x46 #define ARM_CPU_IMP_HISI 0x48 +#define ARM_CPU_IMP_APPLE 0x61 #define ARM_CPU_PART_AEM_V8 0xD0F #define ARM_CPU_PART_FOUNDATION 0xD00 @@ -99,6 +100,9 @@ #define HISI_CPU_PART_TSV110 0xD01 +#define APPLE_CPU_PART_M1_ICESTORM 0x022 +#define APPLE_CPU_PART_M1_FIRESTORM 0x023 + #define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53) #define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57) #define MIDR_CORTEX_A72 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A72) @@ -127,6 +131,8 @@ #define MIDR_NVIDIA_CARMEL MIDR_CPU_MODEL(ARM_CPU_IMP_NVIDIA, NVIDIA_CPU_PART_CARMEL) #define MIDR_FUJITSU_A64FX MIDR_CPU_MODEL(ARM_CPU_IMP_FUJITSU, FUJITSU_CPU_PART_A64FX) #define MIDR_HISI_TSV110 MIDR_CPU_MODEL(ARM_CPU_IMP_HISI, HISI_CPU_PART_TSV110) +#define MIDR_APPLE_M1_ICESTORM MIDR_CPU_MODEL(ARM_CPU_IMP_APPLE, APPLE_CPU_PART_M1_ICESTORM) +#define MIDR_APPLE_M1_FIRESTORM MIDR_CPU_MODEL(ARM_CPU_IMP_APPLE, APPLE_CPU_PART_M1_FIRESTORM) /* Fujitsu Erratum 010001 affects A64FX 1.0 and 1.1, (v0r0 and v1r0) */ #define MIDR_FUJITSU_ERRATUM_010001 MIDR_FUJITSU_A64FX @@ -169,16 +169,7 @@ extern void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size); #define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE)) #define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC)) - -/* - * PCI configuration space mapping function. - * - * The PCI specification disallows posted write configuration transactions. - * Add an arch specific pci_remap_cfgspace() definition that is implemented - * through nGnRnE device memory attribute as recommended by the ARM v8 - * Architecture reference manual Issue A.k B2.8.2 "Device memory". - */ -#define pci_remap_cfgspace(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRnE)) +#define ioremap_np(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRnE)) /* * io{read,write}{16,32,64}be() macros @@ -1041,6 +1041,66 @@ #define TRFCR_ELx_ExTRE BIT(1) #define TRFCR_ELx_E0TRE BIT(0) + +/* GIC Hypervisor interface registers */ +/* ICH_MISR_EL2 bit definitions */ +#define ICH_MISR_EOI (1 << 0) +#define ICH_MISR_U (1 << 1) + +/* ICH_LR*_EL2 bit definitions */ +#define ICH_LR_VIRTUAL_ID_MASK ((1ULL << 32) - 1) + +#define ICH_LR_EOI (1ULL << 41) +#define ICH_LR_GROUP (1ULL << 60) +#define ICH_LR_HW (1ULL << 61) +#define ICH_LR_STATE (3ULL << 62) +#define ICH_LR_PENDING_BIT (1ULL << 62) +#define ICH_LR_ACTIVE_BIT (1ULL << 63) +#define ICH_LR_PHYS_ID_SHIFT 32 +#define ICH_LR_PHYS_ID_MASK (0x3ffULL << ICH_LR_PHYS_ID_SHIFT) +#define ICH_LR_PRIORITY_SHIFT 48 +#define ICH_LR_PRIORITY_MASK (0xffULL << ICH_LR_PRIORITY_SHIFT) + +/* ICH_HCR_EL2 bit definitions */ +#define ICH_HCR_EN (1 << 0) +#define ICH_HCR_UIE (1 << 1) +#define ICH_HCR_NPIE (1 << 3) +#define ICH_HCR_TC (1 << 10) +#define ICH_HCR_TALL0 (1 << 11) +#define ICH_HCR_TALL1 (1 << 12) +#define ICH_HCR_EOIcount_SHIFT 27 +#define ICH_HCR_EOIcount_MASK (0x1f << ICH_HCR_EOIcount_SHIFT) + +/* ICH_VMCR_EL2 bit definitions */ +#define ICH_VMCR_ACK_CTL_SHIFT 2 +#define ICH_VMCR_ACK_CTL_MASK (1 << ICH_VMCR_ACK_CTL_SHIFT) +#define ICH_VMCR_FIQ_EN_SHIFT 3 +#define ICH_VMCR_FIQ_EN_MASK (1 << ICH_VMCR_FIQ_EN_SHIFT) +#define ICH_VMCR_CBPR_SHIFT 4 +#define ICH_VMCR_CBPR_MASK (1 << ICH_VMCR_CBPR_SHIFT) +#define ICH_VMCR_EOIM_SHIFT 9 +#define ICH_VMCR_EOIM_MASK (1 << ICH_VMCR_EOIM_SHIFT) +#define ICH_VMCR_BPR1_SHIFT 18 +#define ICH_VMCR_BPR1_MASK (7 << ICH_VMCR_BPR1_SHIFT) +#define ICH_VMCR_BPR0_SHIFT 21 +#define ICH_VMCR_BPR0_MASK (7 << ICH_VMCR_BPR0_SHIFT) +#define ICH_VMCR_PMR_SHIFT 24 +#define ICH_VMCR_PMR_MASK (0xffUL << ICH_VMCR_PMR_SHIFT) +#define ICH_VMCR_ENG0_SHIFT 0 +#define ICH_VMCR_ENG0_MASK (1 << ICH_VMCR_ENG0_SHIFT) +#define ICH_VMCR_ENG1_SHIFT 1 +#define ICH_VMCR_ENG1_MASK (1 << ICH_VMCR_ENG1_SHIFT) + +/* ICH_VTR_EL2 bit definitions */ +#define ICH_VTR_PRI_BITS_SHIFT 29 +#define ICH_VTR_PRI_BITS_MASK (7 << ICH_VTR_PRI_BITS_SHIFT) +#define ICH_VTR_ID_BITS_SHIFT 23 +#define ICH_VTR_ID_BITS_MASK (7 << ICH_VTR_ID_BITS_SHIFT) +#define ICH_VTR_SEIS_SHIFT 22 +#define ICH_VTR_SEIS_MASK (1 << ICH_VTR_SEIS_SHIFT) +#define ICH_VTR_A3V_SHIFT 21 +#define ICH_VTR_A3V_MASK (1 << ICH_VTR_A3V_SHIFT) + #ifdef __ASSEMBLY__ .irp num,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 @@ -409,6 +409,10 @@ static inline void __iomem *ioremap(unsigned long offset, unsigned long size) #define ioremap_uc(X,Y) ioremap((X),(Y)) #define ioremap_wc(X,Y) ioremap((X),(Y)) #define ioremap_wt(X,Y) ioremap((X),(Y)) +static inline void __iomem *ioremap_np(unsigned long offset, unsigned long size) +{ + return NULL; +} static inline void iounmap(volatile void __iomem *addr) { @@ -64,6 +64,14 @@ static u32 arch_timer_rate __ro_after_init; u32 arch_timer_rate1 __ro_after_init; static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; +static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { + [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", + [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", + [ARCH_TIMER_VIRT_PPI] = "virt", + [ARCH_TIMER_HYP_PPI] = "hyp-phys", + [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", +}; + static struct clock_event_device __percpu *arch_timer_evt; static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; @@ -1281,8 +1289,9 @@ static void __init arch_timer_populate_kvm_info(void) static int __init arch_timer_of_init(struct device_node *np) { - int i, ret; + int i, irq, ret; u32 rate; + bool has_names; if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { pr_warn("multiple nodes in dt, skipping\n"); @@ -1290,8 +1299,17 @@ static int __init arch_timer_of_init(struct device_node *np) } arch_timers_present |= ARCH_TIMER_TYPE_CP15; - for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) - arch_timer_ppi[i] = irq_of_parse_and_map(np, i); + + has_names = of_property_read_bool(np, "interrupt-names"); + + for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { + if (has_names) + irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); + else + irq = of_irq_get(np, i); + if (irq > 0) + arch_timer_ppi[i] = irq; + } arch_timer_populate_kvm_info(); @@ -593,4 +593,12 @@ config IRQ_IDT3243X select GENERIC_IRQ_CHIP select IRQ_DOMAIN +config APPLE_AIC + bool "Apple Interrupt Controller (AIC)" + depends on ARM64 + default ARCH_APPLE + help + Support for the Apple Interrupt Controller found on Apple Silicon SoCs, + such as the M1. + endmenu @@ -115,3 +115,4 @@ obj-$(CONFIG_SL28CPLD_INTC) += irq-sl28cpld.o obj-$(CONFIG_MACH_REALTEK_RTL) += irq-realtek-rtl.o obj-$(CONFIG_WPCM450_AIC) += irq-wpcm450-aic.o obj-$(CONFIG_IRQ_IDT3243X) += irq-idt3243x.o +obj-$(CONFIG_APPLE_AIC) += irq-apple-aic.o diff --git a/drivers/irqchip/irq-apple-aic.c b/drivers/irqchip/irq-apple-aic.c new file mode 100644 index 0000000000000..c179e27062fd5 --- /dev/null +++ b/ drivers/irqchip/irq-apple-aic.c@@ -0,0 +1,852 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright The Asahi Linux Contributors + * + * Based on irq-lpc32xx: + * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com> + * Based on irq-bcm2836: + * Copyright 2015 Broadcom + */ + +/* + * AIC is a fairly simple interrupt controller with the following features: + * + * - 896 level-triggered hardware IRQs + * - Single mask bit per IRQ + * - Per-IRQ affinity setting + * - Automatic masking on event delivery (auto-ack) + * - Software triggering (ORed with hw line) + * - 2 per-CPU IPIs (meant as "self" and "other", but they are + * interchangeable if not symmetric) + * - Automatic prioritization (single event/ack register per CPU, lower IRQs = + * higher priority) + * - Automatic masking on ack + * - Default "this CPU" register view and explicit per-CPU views + * + * In addition, this driver also handles FIQs, as these are routed to the same + * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and + * performance counters (TODO). + * + * Implementation notes: + * + * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, + * and one for IPIs. + * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller + * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). + * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. + * - DT bindings use 3-cell form (like GIC): + * - <0 nr flags> - hwirq #nr + * - <1 nr flags> - FIQ #nr + * - nr=0 Physical HV timer + * - nr=1 Virtual HV timer + * - nr=2 Physical guest timer + * - nr=3 Virtual guest timer + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/cpuhotplug.h> +#include <linux/io.h> +#include <linux/irqchip.h> +#include <linux/irqdomain.h> +#include <linux/limits.h> +#include <linux/of_address.h> +#include <linux/slab.h> +#include <asm/exception.h> +#include <asm/sysreg.h> +#include <asm/virt.h> + +#include <dt-bindings/interrupt-controller/apple-aic.h> + +/* + * AIC registers (MMIO) + */ + +#define AIC_INFO 0x0004 +#define AIC_INFO_NR_HW GENMASK(15, 0) + +#define AIC_CONFIG 0x0010 + +#define AIC_WHOAMI 0x2000 +#define AIC_EVENT 0x2004 +#define AIC_EVENT_TYPE GENMASK(31, 16) +#define AIC_EVENT_NUM GENMASK(15, 0) + +#define AIC_EVENT_TYPE_HW 1 +#define AIC_EVENT_TYPE_IPI 4 +#define AIC_EVENT_IPI_OTHER 1 +#define AIC_EVENT_IPI_SELF 2 + +#define AIC_IPI_SEND 0x2008 +#define AIC_IPI_ACK 0x200c +#define AIC_IPI_MASK_SET 0x2024 +#define AIC_IPI_MASK_CLR 0x2028 + +#define AIC_IPI_SEND_CPU(cpu) BIT(cpu) + +#define AIC_IPI_OTHER BIT(0) +#define AIC_IPI_SELF BIT(31) + +#define AIC_TARGET_CPU 0x3000 +#define AIC_SW_SET 0x4000 +#define AIC_SW_CLR 0x4080 +#define AIC_MASK_SET 0x4100 +#define AIC_MASK_CLR 0x4180 + +#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7)) +#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7)) +#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) +#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) + +#define MASK_REG(x) (4 * ((x) >> 5)) +#define MASK_BIT(x) BIT((x) & GENMASK(4, 0)) + +/* + * IMP-DEF sysregs that control FIQ sources + * Note: sysreg-based IPIs are not supported yet. + */ + +/* Core PMC control register */ +#define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0) +#define PMCR0_IMODE GENMASK(10, 8) +#define PMCR0_IMODE_OFF 0 +#define PMCR0_IMODE_PMI 1 +#define PMCR0_IMODE_AIC 2 +#define PMCR0_IMODE_HALT 3 +#define PMCR0_IMODE_FIQ 4 +#define PMCR0_IACT BIT(11) + +/* IPI request registers */ +#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0) +#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1) +#define IPI_RR_CPU GENMASK(7, 0) +/* Cluster only used for the GLOBAL register */ +#define IPI_RR_CLUSTER GENMASK(23, 16) +#define IPI_RR_TYPE GENMASK(29, 28) +#define IPI_RR_IMMEDIATE 0 +#define IPI_RR_RETRACT 1 +#define IPI_RR_DEFERRED 2 +#define IPI_RR_NOWAKE 3 + +/* IPI status register */ +#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1) +#define IPI_SR_PENDING BIT(0) + +/* Guest timer FIQ enable register */ +#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3) +#define VM_TMR_FIQ_ENABLE_V BIT(0) +#define VM_TMR_FIQ_ENABLE_P BIT(1) + +/* Deferred IPI countdown register */ +#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1) + +/* Uncore PMC control register */ +#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4) +#define UPMCR0_IMODE GENMASK(18, 16) +#define UPMCR0_IMODE_OFF 0 +#define UPMCR0_IMODE_AIC 2 +#define UPMCR0_IMODE_HALT 3 +#define UPMCR0_IMODE_FIQ 4 + +/* Uncore PMC status register */ +#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4) +#define UPMSR_IACT BIT(0) + +#define AIC_NR_FIQ 4 +#define AIC_NR_SWIPI 32 + +/* + * FIQ hwirq index definitions: FIQ sources use the DT binding defines + * directly, except that timers are special. At the irqchip level, the + * two timer types are represented by their access method: _EL0 registers + * or _EL02 registers. In the DT binding, the timers are represented + * by their purpose (HV or guest). This mapping is for when the kernel is + * running at EL2 (with VHE). When the kernel is running at EL1, the + * mapping differs and aic_irq_domain_translate() performs the remapping. + */ + +#define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS +#define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT +#define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS +#define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT + +struct aic_irq_chip { + void __iomem *base; + struct irq_domain *hw_domain; + struct irq_domain *ipi_domain; + int nr_hw; + int ipi_hwirq; +}; + +static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); + +static DEFINE_PER_CPU(atomic_t, aic_vipi_flag); +static DEFINE_PER_CPU(atomic_t, aic_vipi_enable); + +static struct aic_irq_chip *aic_irqc; + +static void aic_handle_ipi(struct pt_regs *regs); + +static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) +{ + return readl_relaxed(ic->base + reg); +} + +static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) +{ + writel_relaxed(val, ic->base + reg); +} + +/* + * IRQ irqchip + */ + +static void aic_irq_mask(struct irq_data *d) +{ + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + + aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)), + MASK_BIT(irqd_to_hwirq(d))); +} + +static void aic_irq_unmask(struct irq_data *d) +{ + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + + aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq), + MASK_BIT(irqd_to_hwirq(d))); +} + +static void aic_irq_eoi(struct irq_data *d) +{ + /* + * Reading the interrupt reason automatically acknowledges and masks + * the IRQ, so we just unmask it here if needed. + */ + if (!irqd_irq_disabled(d) && !irqd_irq_masked(d)) + aic_irq_unmask(d); +} + +static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) +{ + struct aic_irq_chip *ic = aic_irqc; + u32 event, type, irq; + + do { + /* + * We cannot use a relaxed read here, as reads from DMA buffers + * need to be ordered after the IRQ fires. + */ + event = readl(ic->base + AIC_EVENT); + type = FIELD_GET(AIC_EVENT_TYPE, event); + irq = FIELD_GET(AIC_EVENT_NUM, event); + + if (type == AIC_EVENT_TYPE_HW) + handle_domain_irq(aic_irqc->hw_domain, irq, regs); + else if (type == AIC_EVENT_TYPE_IPI && irq == 1) + aic_handle_ipi(regs); + else if (event != 0) + pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); + } while (event); + + /* + * vGIC maintenance interrupts end up here too, so we need to check + * for them separately. This should never trigger if KVM is working + * properly, because it will have already taken care of clearing it + * on guest exit before this handler runs. + */ + if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && + read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { + pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); + sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); + } +} + +static int aic_irq_set_affinity(struct irq_data *d, + const struct cpumask *mask_val, bool force) +{ + irq_hw_number_t hwirq = irqd_to_hwirq(d); + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + int cpu; + + if (force) + cpu = cpumask_first(mask_val); + else + cpu = cpumask_any_and(mask_val, cpu_online_mask); + + aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu)); + irq_data_update_effective_affinity(d, cpumask_of(cpu)); + + return IRQ_SET_MASK_OK; +} + +static int aic_irq_set_type(struct irq_data *d, unsigned int type) +{ + /* + * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't + * have a way to find out the type of any given IRQ, so just allow both. + */ + return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; +} + +static struct irq_chip aic_chip = { + .name = "AIC", + .irq_mask = aic_irq_mask, + .irq_unmask = aic_irq_unmask, + .irq_eoi = aic_irq_eoi, + .irq_set_affinity = aic_irq_set_affinity, + .irq_set_type = aic_irq_set_type, +}; + +/* + * FIQ irqchip + */ + +static unsigned long aic_fiq_get_idx(struct irq_data *d) +{ + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + + return irqd_to_hwirq(d) - ic->nr_hw; +} + +static void aic_fiq_set_mask(struct irq_data *d) +{ + /* Only the guest timers have real mask bits, unfortunately. */ + switch (aic_fiq_get_idx(d)) { + case AIC_TMR_EL02_PHYS: + sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); + isb(); + break; + case AIC_TMR_EL02_VIRT: + sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); + isb(); + break; + default: + break; + } +} + +static void aic_fiq_clear_mask(struct irq_data *d) +{ + switch (aic_fiq_get_idx(d)) { + case AIC_TMR_EL02_PHYS: + sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); + isb(); + break; + case AIC_TMR_EL02_VIRT: + sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); + isb(); + break; + default: + break; + } +} + +static void aic_fiq_mask(struct irq_data *d) +{ + aic_fiq_set_mask(d); + __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); +} + +static void aic_fiq_unmask(struct irq_data *d) +{ + aic_fiq_clear_mask(d); + __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); +} + +static void aic_fiq_eoi(struct irq_data *d) +{ + /* We mask to ack (where we can), so we need to unmask at EOI. */ + if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) + aic_fiq_clear_mask(d); +} + +#define TIMER_FIRING(x) \ + (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \ + ARCH_TIMER_CTRL_IT_STAT)) == \ + (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) + +static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) +{ + /* + * It would be really nice if we had a system register that lets us get + * the FIQ source state without having to peek down into sources... + * but such a register does not seem to exist. + * + * So, we have these potential sources to test for: + * - Fast IPIs (not yet used) + * - The 4 timers (CNTP, CNTV for each of HV and guest) + * - Per-core PMCs (not yet supported) + * - Per-cluster uncore PMCs (not yet supported) + * + * Since not dealing with any of these results in a FIQ storm, + * we check for everything here, even things we don't support yet. + */ + + if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { + pr_err_ratelimited("Fast IPI fired. Acking.\n"); + write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); + } + + if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) + handle_domain_irq(aic_irqc->hw_domain, + aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs); + + if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) + handle_domain_irq(aic_irqc->hw_domain, + aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs); + + if (is_kernel_in_hyp_mode()) { + uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); + + if ((enabled & VM_TMR_FIQ_ENABLE_P) && + TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) + handle_domain_irq(aic_irqc->hw_domain, + aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs); + + if ((enabled & VM_TMR_FIQ_ENABLE_V) && + TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) + handle_domain_irq(aic_irqc->hw_domain, + aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs); + } + + if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) == + (FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) { + /* + * Not supported yet, let's figure out how to handle this when + * we implement these proprietary performance counters. For now, + * just mask it and move on. + */ + pr_err_ratelimited("PMC FIQ fired. Masking.\n"); + sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, + FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); + } + + if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && + (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { + /* Same story with uncore PMCs */ + pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); + sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, + FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); + } +} + +static int aic_fiq_set_type(struct irq_data *d, unsigned int type) +{ + return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; +} + +static struct irq_chip fiq_chip = { + .name = "AIC-FIQ", + .irq_mask = aic_fiq_mask, + .irq_unmask = aic_fiq_unmask, + .irq_ack = aic_fiq_set_mask, + .irq_eoi = aic_fiq_eoi, + .irq_set_type = aic_fiq_set_type, +}; + +/* + * Main IRQ domain + */ + +static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, + irq_hw_number_t hw) +{ + struct aic_irq_chip *ic = id->host_data; + + if (hw < ic->nr_hw) { + irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data, + handle_fasteoi_irq, NULL, NULL); + irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); + } else { + irq_set_percpu_devid(irq); + irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, + handle_percpu_devid_irq, NULL, NULL); + } + + return 0; +} + +static int aic_irq_domain_translate(struct irq_domain *id, + struct irq_fwspec *fwspec, + unsigned long *hwirq, + unsigned int *type) +{ + struct aic_irq_chip *ic = id->host_data; + + if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode)) + return -EINVAL; + + switch (fwspec->param[0]) { + case AIC_IRQ: + if (fwspec->param[1] >= ic->nr_hw) + return -EINVAL; + *hwirq = fwspec->param[1]; + break; + case AIC_FIQ: + if (fwspec->param[1] >= AIC_NR_FIQ) + return -EINVAL; + *hwirq = ic->nr_hw + fwspec->param[1]; + + /* + * In EL1 the non-redirected registers are the guest's, + * not EL2's, so remap the hwirqs to match. + */ + if (!is_kernel_in_hyp_mode()) { + switch (fwspec->param[1]) { + case AIC_TMR_GUEST_PHYS: + *hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS; + break; + case AIC_TMR_GUEST_VIRT: + *hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT; + break; + case AIC_TMR_HV_PHYS: + case AIC_TMR_HV_VIRT: + return -ENOENT; + default: + break; + } + } + break; + default: + return -EINVAL; + } + + *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; + + return 0; +} + +static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, + unsigned int nr_irqs, void *arg) +{ + unsigned int type = IRQ_TYPE_NONE; + struct irq_fwspec *fwspec = arg; + irq_hw_number_t hwirq; + int i, ret; + + ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); + if (ret) + return ret; + + for (i = 0; i < nr_irqs; i++) { + ret = aic_irq_domain_map(domain, virq + i, hwirq + i); + if (ret) + return ret; + } + + return 0; +} + +static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, + unsigned int nr_irqs) +{ + int i; + + for (i = 0; i < nr_irqs; i++) { + struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); + + irq_set_handler(virq + i, NULL); + irq_domain_reset_irq_data(d); + } +} + +static const struct irq_domain_ops aic_irq_domain_ops = { + .translate = aic_irq_domain_translate, + .alloc = aic_irq_domain_alloc, + .free = aic_irq_domain_free, +}; + +/* + * IPI irqchip + */ + +static void aic_ipi_mask(struct irq_data *d) +{ + u32 irq_bit = BIT(irqd_to_hwirq(d)); + + /* No specific ordering requirements needed here. */ + atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable)); +} + +static void aic_ipi_unmask(struct irq_data *d) +{ + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + u32 irq_bit = BIT(irqd_to_hwirq(d)); + + atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable)); + + /* + * The atomic_or() above must complete before the atomic_read() + * below to avoid racing aic_ipi_send_mask(). + */ + smp_mb__after_atomic(); + + /* + * If a pending vIPI was unmasked, raise a HW IPI to ourselves. + * No barriers needed here since this is a self-IPI. + */ + if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) + aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id())); +} + +static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) +{ + struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); + u32 irq_bit = BIT(irqd_to_hwirq(d)); + u32 send = 0; + int cpu; + unsigned long pending; + + for_each_cpu(cpu, mask) { + /* + * This sequence is the mirror of the one in aic_ipi_unmask(); + * see the comment there. Additionally, release semantics + * ensure that the vIPI flag set is ordered after any shared + * memory accesses that precede it. This therefore also pairs + * with the atomic_fetch_andnot in aic_handle_ipi(). + */ + pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu)); + + /* + * The atomic_fetch_or_release() above must complete before the + * atomic_read() below to avoid racing aic_ipi_unmask(). + */ + smp_mb__after_atomic(); + + if (!(pending & irq_bit) && + (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) + send |= AIC_IPI_SEND_CPU(cpu); + } + + /* + * The flag writes must complete before the physical IPI is issued + * to another CPU. This is implied by the control dependency on + * the result of atomic_read_acquire() above, which is itself + * already ordered after the vIPI flag write. + */ + if (send) + aic_ic_write(ic, AIC_IPI_SEND, send); +} + +static struct irq_chip ipi_chip = { + .name = "AIC-IPI", + .irq_mask = aic_ipi_mask, + .irq_unmask = aic_ipi_unmask, + .ipi_send_mask = aic_ipi_send_mask, +}; + +/* + * IPI IRQ domain + */ + +static void aic_handle_ipi(struct pt_regs *regs) +{ + int i; + unsigned long enabled, firing; + + /* + * Ack the IPI. We need to order this after the AIC event read, but + * that is enforced by normal MMIO ordering guarantees. + */ + aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); + + /* + * The mask read does not need to be ordered. Only we can change + * our own mask anyway, so no races are possible here, as long as + * we are properly in the interrupt handler (which is covered by + * the barrier that is part of the top-level AIC handler's readl()). + */ + enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable)); + + /* + * Clear the IPIs we are about to handle. This pairs with the + * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be + * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and + * before IPI handling code (to avoid races handling vIPIs before they + * are signaled). The former is taken care of by the release semantics + * of the write portion, while the latter is taken care of by the + * acquire semantics of the read portion. + */ + firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled; + + for_each_set_bit(i, &firing, AIC_NR_SWIPI) + handle_domain_irq(aic_irqc->ipi_domain, i, regs); + + /* + * No ordering needed here; at worst this just changes the timing of + * when the next IPI will be delivered. + */ + aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); +} + +static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq, + unsigned int nr_irqs, void *args) +{ + int i; + + for (i = 0; i < nr_irqs; i++) { + irq_set_percpu_devid(virq + i); + irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data, + handle_percpu_devid_irq, NULL, NULL); + } + + return 0; +} + +static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) +{ + /* Not freeing IPIs */ +} + +static const struct irq_domain_ops aic_ipi_domain_ops = { + .alloc = aic_ipi_alloc, + .free = aic_ipi_free, +}; + +static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) +{ + struct irq_domain *ipi_domain; + int base_ipi; + + ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI, + &aic_ipi_domain_ops, irqc); + if (WARN_ON(!ipi_domain)) + return -ENODEV; + + ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE; + irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI); + + base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI, + NUMA_NO_NODE, NULL, false, NULL); + + if (WARN_ON(!base_ipi)) { + irq_domain_remove(ipi_domain); + return -ENODEV; + } + + set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); + + irqc->ipi_domain = ipi_domain; + + return 0; +} + +static int aic_init_cpu(unsigned int cpu) +{ + /* Mask all hard-wired per-CPU IRQ/FIQ sources */ + + /* Pending Fast IPI FIQs */ + write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); + + /* Timer FIQs */ + sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); + sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); + + /* EL2-only (VHE mode) IRQ sources */ + if (is_kernel_in_hyp_mode()) { + /* Guest timers */ + sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, + VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); + + /* vGIC maintenance IRQ */ + sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); + } + + /* PMC FIQ */ + sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, + FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); + + /* Uncore PMC FIQ */ + sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, + FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); + + /* Commit all of the above */ + isb(); + + /* + * Make sure the kernel's idea of logical CPU order is the same as AIC's + * If we ever end up with a mismatch here, we will have to introduce + * a mapping table similar to what other irqchip drivers do. + */ + WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); + + /* + * Always keep IPIs unmasked at the hardware level (except auto-masking + * by AIC during processing). We manage masks at the vIPI level. + */ + aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); + aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); + aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); + + /* Initialize the local mask state */ + __this_cpu_write(aic_fiq_unmasked, 0); + + return 0; +} + +static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) +{ + int i; + void __iomem *regs; + u32 info; + struct aic_irq_chip *irqc; + + regs = of_iomap(node, 0); + if (WARN_ON(!regs)) + return -EIO; + + irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); + if (!irqc) + return -ENOMEM; + + aic_irqc = irqc; + irqc->base = regs; + + info = aic_ic_read(irqc, AIC_INFO); + irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info); + + irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node), + irqc->nr_hw + AIC_NR_FIQ, + &aic_irq_domain_ops, irqc); + if (WARN_ON(!irqc->hw_domain)) { + iounmap(irqc->base); + kfree(irqc); + return -ENODEV; + } + + irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); + + if (aic_init_smp(irqc, node)) { + irq_domain_remove(irqc->hw_domain); + iounmap(irqc->base); + kfree(irqc); + return -ENODEV; + } + + set_handle_irq(aic_handle_irq); + set_handle_fiq(aic_handle_fiq); + + for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) + aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX); + for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) + aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX); + for (i = 0; i < irqc->nr_hw; i++) + aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1); + + if (!is_kernel_in_hyp_mode()) + pr_info("Kernel running in EL1, mapping interrupts"); + + cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, + "irqchip/apple-aic/ipi:starting", + aic_init_cpu, NULL); + + pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n", + irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI); + + return 0; +} + +IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init); @@ -26,6 +26,7 @@ static struct of_bus *of_match_bus(struct device_node *np); static int __of_address_to_resource(struct device_node *dev, const __be32 *addrp, u64 size, unsigned int flags, const char *name, struct resource *r); +static bool of_mmio_is_nonposted(struct device_node *np); /* Debug utility */ #ifdef DEBUG @@ -847,6 +848,9 @@ static int __of_address_to_resource(struct device_node *dev, return -EINVAL; memset(r, 0, sizeof(struct resource)); + if (of_mmio_is_nonposted(dev)) + flags |= IORESOURCE_MEM_NONPOSTED; + r->start = taddr; r->end = taddr + size - 1; r->flags = flags; @@ -896,7 +900,10 @@ void __iomem *of_iomap(struct device_node *np, int index) if (of_address_to_resource(np, index, &res)) return NULL; - return ioremap(res.start, resource_size(&res)); + if (res.flags & IORESOURCE_MEM_NONPOSTED) + return ioremap_np(res.start, resource_size(&res)); + else + return ioremap(res.start, resource_size(&res)); } EXPORT_SYMBOL(of_iomap); @@ -928,7 +935,11 @@ void __iomem *of_io_request_and_map(struct device_node *np, int index, if (!request_mem_region(res.start, resource_size(&res), name)) return IOMEM_ERR_PTR(-EBUSY); - mem = ioremap(res.start, resource_size(&res)); + if (res.flags & IORESOURCE_MEM_NONPOSTED) + mem = ioremap_np(res.start, resource_size(&res)); + else + mem = ioremap(res.start, resource_size(&res)); + if (!mem) { release_mem_region(res.start, resource_size(&res)); return IOMEM_ERR_PTR(-ENOMEM); @@ -1094,3 +1105,31 @@ bool of_dma_is_coherent(struct device_node *np) return false; } EXPORT_SYMBOL_GPL(of_dma_is_coherent); + +/** + * of_mmio_is_nonposted - Check if device uses non-posted MMIO + * @np: device node + * + * Returns true if the "nonposted-mmio" property was found for + * the device's bus. + * + * This is currently only enabled on builds that support Apple ARM devices, as + * an optimization. + */ +static bool of_mmio_is_nonposted(struct device_node *np) +{ + struct device_node *parent; + bool nonposted; + + if (!IS_ENABLED(CONFIG_ARCH_APPLE)) + return false; + + parent = of_get_parent(np); + if (!parent) + return false; + + nonposted = of_property_read_bool(parent, "nonposted-mmio"); + + of_node_put(parent); + return nonposted; +} @@ -942,7 +942,9 @@ static inline void *phys_to_virt(unsigned long address) * * ioremap_wc() and ioremap_wt() can provide more relaxed caching attributes * for specific drivers if the architecture choses to implement them. If they - * are not implemented we fall back to plain ioremap. + * are not implemented we fall back to plain ioremap. Conversely, ioremap_np() + * can provide stricter non-posted write semantics if the architecture + * implements them. */ #ifndef CONFIG_MMU #ifndef ioremap @@ -995,6 +997,23 @@ static inline void __iomem *ioremap_uc(phys_addr_t offset, size_t size) } #endif +/* + * ioremap_np needs an explicit architecture implementation, as it + * requests stronger semantics than regular ioremap(). Portable drivers + * should instead use one of the higher-level abstractions, like + * devm_ioremap_resource(), to choose the correct variant for any given + * device and bus. Portable drivers with a good reason to want non-posted + * write semantics should always provide an ioremap() fallback in case + * ioremap_np() is not available. + */ +#ifndef ioremap_np +#define ioremap_np ioremap_np +static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size) +{ + return NULL; +} +#endif + #ifdef CONFIG_HAS_IOPORT_MAP #ifndef CONFIG_GENERIC_IOMAP #ifndef ioport_map @@ -101,6 +101,15 @@ extern void ioport_unmap(void __iomem *); #define ioremap_wt ioremap #endif +#ifndef ARCH_HAS_IOREMAP_NP +/* See the comment in asm-generic/io.h about ioremap_np(). */ +#define ioremap_np ioremap_np +static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size) +{ + return NULL; +} +#endif + #ifdef CONFIG_PCI /* Destroy a virtual mapping cookie for a PCI BAR (memory or IO) */ struct pci_dev; @@ -32,6 +32,7 @@ enum arch_timer_ppi_nr { ARCH_TIMER_PHYS_NONSECURE_PPI, ARCH_TIMER_VIRT_PPI, ARCH_TIMER_HYP_PPI, + ARCH_TIMER_HYP_VIRT_PPI, ARCH_TIMER_MAX_TIMER_PPI }; @@ -0,0 +1,15 @@ +/* SPDX-License-Identifier: GPL-2.0+ OR MIT */ +#ifndef _DT_BINDINGS_INTERRUPT_CONTROLLER_APPLE_AIC_H +#define _DT_BINDINGS_INTERRUPT_CONTROLLER_APPLE_AIC_H + +#include <dt-bindings/interrupt-controller/irq.h> + +#define AIC_IRQ 0 +#define AIC_FIQ 1 + +#define AIC_TMR_HV_PHYS 0 +#define AIC_TMR_HV_VIRT 1 +#define AIC_TMR_GUEST_PHYS 2 +#define AIC_TMR_GUEST_VIRT 3 + +#endif @@ -100,6 +100,7 @@ enum cpuhp_state { CPUHP_AP_CPU_PM_STARTING, CPUHP_AP_IRQ_GIC_STARTING, CPUHP_AP_IRQ_HIP04_STARTING, + CPUHP_AP_IRQ_APPLE_AIC_STARTING, CPUHP_AP_IRQ_ARMADA_XP_STARTING, CPUHP_AP_IRQ_BCM2836_STARTING, CPUHP_AP_IRQ_MIPS_GIC_STARTING, @@ -68,6 +68,8 @@ void __iomem *devm_ioremap_uc(struct device *dev, resource_size_t offset, resource_size_t size); void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset, resource_size_t size); +void __iomem *devm_ioremap_np(struct device *dev, resource_size_t offset, + resource_size_t size); void devm_iounmap(struct device *dev, void __iomem *addr); int check_signature(const volatile void __iomem *io_addr, const unsigned char *signature, int length); @@ -80,20 +82,20 @@ void devm_memunmap(struct device *dev, void *addr); #ifdef CONFIG_PCI /* * The PCI specifications (Rev 3.0, 3.2.5 "Transaction Ordering and - * Posting") mandate non-posted configuration transactions. There is - * no ioremap API in the kernel that can guarantee non-posted write - * semantics across arches so provide a default implementation for - * mapping PCI config space that defaults to ioremap(); arches - * should override it if they have memory mapping implementations that - * guarantee non-posted writes semantics to make the memory mapping - * compliant with the PCI specification. + * Posting") mandate non-posted configuration transactions. This default + * implementation attempts to use the ioremap_np() API to provide this + * on arches that support it, and falls back to ioremap() on those that + * don't. Overriding this function is deprecated; arches that properly + * support non-posted accesses should implement ioremap_np() instead, which + * this default implementation can then use to return mappings compliant with + * the PCI specification. */ #ifndef pci_remap_cfgspace #define pci_remap_cfgspace pci_remap_cfgspace static inline void __iomem *pci_remap_cfgspace(phys_addr_t offset, size_t size) { - return ioremap(offset, size); + return ioremap_np(offset, size) ?: ioremap(offset, size); } #endif #endif @@ -108,6 +108,7 @@ struct resource { #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) +#define IORESOURCE_MEM_NONPOSTED (1<<7) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) @@ -575,67 +575,11 @@ #define ICC_SRE_EL1_DFB (1U << 1) #define ICC_SRE_EL1_SRE (1U << 0) -/* - * Hypervisor interface registers (SRE only) - */ -#define ICH_LR_VIRTUAL_ID_MASK ((1ULL << 32) - 1) - -#define ICH_LR_EOI (1ULL << 41) -#define ICH_LR_GROUP (1ULL << 60) -#define ICH_LR_HW (1ULL << 61) -#define ICH_LR_STATE (3ULL << 62) -#define ICH_LR_PENDING_BIT (1ULL << 62) -#define ICH_LR_ACTIVE_BIT (1ULL << 63) -#define ICH_LR_PHYS_ID_SHIFT 32 -#define ICH_LR_PHYS_ID_MASK (0x3ffULL << ICH_LR_PHYS_ID_SHIFT) -#define ICH_LR_PRIORITY_SHIFT 48 -#define ICH_LR_PRIORITY_MASK (0xffULL << ICH_LR_PRIORITY_SHIFT) - /* These are for GICv2 emulation only */ #define GICH_LR_VIRTUALID (0x3ffUL << 0) #define GICH_LR_PHYSID_CPUID_SHIFT (10) #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) -#define ICH_MISR_EOI (1 << 0) -#define ICH_MISR_U (1 << 1) - -#define ICH_HCR_EN (1 << 0) -#define ICH_HCR_UIE (1 << 1) -#define ICH_HCR_NPIE (1 << 3) -#define ICH_HCR_TC (1 << 10) -#define ICH_HCR_TALL0 (1 << 11) -#define ICH_HCR_TALL1 (1 << 12) -#define ICH_HCR_EOIcount_SHIFT 27 -#define ICH_HCR_EOIcount_MASK (0x1f << ICH_HCR_EOIcount_SHIFT) - -#define ICH_VMCR_ACK_CTL_SHIFT 2 -#define ICH_VMCR_ACK_CTL_MASK (1 << ICH_VMCR_ACK_CTL_SHIFT) -#define ICH_VMCR_FIQ_EN_SHIFT 3 -#define ICH_VMCR_FIQ_EN_MASK (1 << ICH_VMCR_FIQ_EN_SHIFT) -#define ICH_VMCR_CBPR_SHIFT 4 -#define ICH_VMCR_CBPR_MASK (1 << ICH_VMCR_CBPR_SHIFT) -#define ICH_VMCR_EOIM_SHIFT 9 -#define ICH_VMCR_EOIM_MASK (1 << ICH_VMCR_EOIM_SHIFT) -#define ICH_VMCR_BPR1_SHIFT 18 -#define ICH_VMCR_BPR1_MASK (7 << ICH_VMCR_BPR1_SHIFT) -#define ICH_VMCR_BPR0_SHIFT 21 -#define ICH_VMCR_BPR0_MASK (7 << ICH_VMCR_BPR0_SHIFT) -#define ICH_VMCR_PMR_SHIFT 24 -#define ICH_VMCR_PMR_MASK (0xffUL << ICH_VMCR_PMR_SHIFT) -#define ICH_VMCR_ENG0_SHIFT 0 -#define ICH_VMCR_ENG0_MASK (1 << ICH_VMCR_ENG0_SHIFT) -#define ICH_VMCR_ENG1_SHIFT 1 -#define ICH_VMCR_ENG1_MASK (1 << ICH_VMCR_ENG1_SHIFT) - -#define ICH_VTR_PRI_BITS_SHIFT 29 -#define ICH_VTR_PRI_BITS_MASK (7 << ICH_VTR_PRI_BITS_SHIFT) -#define ICH_VTR_ID_BITS_SHIFT 23 -#define ICH_VTR_ID_BITS_MASK (7 << ICH_VTR_ID_BITS_SHIFT) -#define ICH_VTR_SEIS_SHIFT 22 -#define ICH_VTR_SEIS_MASK (1 << ICH_VTR_SEIS_SHIFT) -#define ICH_VTR_A3V_SHIFT 21 -#define ICH_VTR_A3V_MASK (1 << ICH_VTR_A3V_SHIFT) - #define ICC_IAR1_EL1_SPURIOUS 0x3ff #define ICC_SRE_EL2_SRE (1 << 0) @@ -10,6 +10,7 @@ enum devm_ioremap_type { DEVM_IOREMAP = 0, DEVM_IOREMAP_UC, DEVM_IOREMAP_WC, + DEVM_IOREMAP_NP, }; void devm_ioremap_release(struct device *dev, void *res) @@ -42,6 +43,9 @@ static void __iomem *__devm_ioremap(struct device *dev, resource_size_t offset, case DEVM_IOREMAP_WC: addr = ioremap_wc(offset, size); break; + case DEVM_IOREMAP_NP: + addr = ioremap_np(offset, size); + break; } if (addr) { @@ -99,6 +103,21 @@ void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset, EXPORT_SYMBOL(devm_ioremap_wc); /** + * devm_ioremap_np - Managed ioremap_np() + * @dev: Generic device to remap IO address for + * @offset: Resource address to map + * @size: Size of map + * + * Managed ioremap_np(). Map is automatically unmapped on driver detach. + */ +void __iomem *devm_ioremap_np(struct device *dev, resource_size_t offset, + resource_size_t size) +{ + return __devm_ioremap(dev, offset, size, DEVM_IOREMAP_NP); +} +EXPORT_SYMBOL(devm_ioremap_np); + +/** * devm_iounmap - Managed iounmap() * @dev: Generic device to unmap for * @addr: Address to unmap @@ -128,6 +147,9 @@ __devm_ioremap_resource(struct device *dev, const struct resource *res, return IOMEM_ERR_PTR(-EINVAL); } + if (type == DEVM_IOREMAP && res->flags & IORESOURCE_MEM_NONPOSTED) + type = DEVM_IOREMAP_NP; + size = resource_size(res); if (res->name) |
from Hacker News https://ift.tt/3eAn5pb
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.