Monday, August 8, 2022

Attempts to power planes with hydrogen

Few of the thousands of tourists who visit West Palm Beach, Florida, every year for its beaches notice the abandoned industrial site on the edge of town. A faded sign reading "CAMERAS FIREARMS NOT PERMITTED ON THIS PROPERTY" was attached to a gate blocking a forgotten access road. It was one of the few clues that the Apix Fertilizer factory once hid a secret.

The 10-square-mile (25.9 sq km) site was a clandestine government facility that, in the late 1950s, was at the heart of American efforts to spy on the Soviet nuclear arsenal.

Rather than producing fertiliser for farmers, the site was probably the world’s largest producer of liquid hydrogen, which was needed for one thing: Project Suntan. This was the code name given to the "beyond top-secret" project to build the replacement for the Lockheed U-2 spy plane, which began in 1956. 

The Lockheed CL-400 Suntan was more like a space plane, or a Thunderbird, than a spy plane. Led by Lockheed's genius designer and secretive Skunk Works founder Kelly Johnson, the dartlike flying machine was intended to fly at Mach 2.5 at 30,000m (100,000ft) with a skin temperature of 177ºC (350ºF), have a range of 4,800km (3,000 miles) and be powered by liquid hydrogen – that is, hydrogen cooled down to cryogenic temperatures of around -423ºF (-253C). The Skunk Works, based in Burbank California, was a business-within-a-business that was free of the usual corporate oversight.

You might also like:

 

Engineers believed they were in a "hydrogen race" against the Soviets after U-2 flights over the Soviet Union spotted the construction of liquid hydrogen plants. The Americans became convinced that the Soviets were developing their own space plane/spy plane, or a high-flying, high-speed interceptor to shoot down the U-2. The true Soviet motivation became clear in 1957, when Sputnik was launched on top of a liquid hydrogen-powered rocket.

Even though aspects of the project were a success, the Skunk Works team was unable to solve two problems with hydrogen-powered aircraft which still confront designers today. The first was range. Hydrogen is very light compared to kerosene – traditional aviation fuel – and packs three times as much punch per unit of mass, but it needs four times the volume on an aircraft for the same hit, and storing it is tricky.



from Hacker News https://ift.tt/dS9njlT

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.